Skip to main content

Vertical Structure of Current in Homogeneous and Stratified Waters

  • Chapter
Hydrodynamics of Lakes

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 286))

Abstract

In this section the hydrodynamic equations are formulated, mainly in order to state basic principles and introduce a notation. Simple solutions are then developed for water movements in a narrow rectangular basin subjected to steady wind directed along its length. Vertical structures of current are derived for both one- and two-layered systems representing, respectively, a lake during conditions of winter homogeneity and summer stratification. In spite of their simplicity, for the most part achieved by linearization, the use of constant coefficients of eddy viscosity and the neglect of the Coriolis force, the solutions illustrate some important facts about the dynamics of wind-driven flows in a long narrow lake. Perhaps the main interest of the analysis lies in the actual construction of closed solutions, satisfying appropriate boundary conditions, for lake circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonham-Carter, G. and Thomas, J.H., 1973. Numerical calculation of steady wind-driven currents in Lake Ontario and the Rochester embayment. Proc. 16th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., pp. 640–662.

    Google Scholar 

  • BoWden, K.F., 1953. Note on wind drift in a channel in the presence of tidal currents. Proc. Roy. Soc. A, 219, pp. 426–446.

    Article  MATH  ADS  Google Scholar 

  • Bowden, K.F., 1978. Physical problems of the benthic boundary layer. Geophysical Surveys, 3, pp. 255–296.

    Article  ADS  Google Scholar 

  • Bowden, K.F., Fairbairn, L.A. and Hughes, P., 1959. The distribution of shearing stresses in a tidal current. Geophys. J.R. astr. Soc., 2, pp. 288–305.

    MATH  Google Scholar 

  • Bye, J.A.T., 1965. Wind-driven circulation in unstratified lakes. Limnol. Oceanogr., 10, pp. 451–458.

    Article  Google Scholar 

  • Csanady, G.T., 1976. Mean circulation in shallow seas. J. Geophys. Res., 81, pp. 5389–5399.

    Article  ADS  Google Scholar 

  • Csanady, G.T., 1978. Turbulent interface layers. J. Geophys. Res., 83, pp. 2329–2342.

    Article  ADS  Google Scholar 

  • Csanady, G.T., 1979. A developing turbulent surface shear layer model. J. Geophys. Res., 84, pp. 4944–4948.

    Article  ADS  Google Scholar 

  • Csanady, G.T., 1980. The evolution of a turbulent Ekman layer. J. Geophys. Res., 85, pp. 1537–1547.

    Article  ADS  Google Scholar 

  • Csanady, G.T., 1982. Circulation in the coastal ocean. Dordrecht, Holland: Reidel.

    Google Scholar 

  • Davies, A.M., 1977a. The numerical solution of the three-dimensional hydrodynamic equations, using a B-spline representation of the vertical current profile. pp. 1–25 in, Bottom Turbulence, (ed. J.C.J. Nihoul). Amsterdam: Elsevier.

    Google Scholar 

  • Davies, A.M., 1977b. Three-dimensional model with depth-varying eddy viscosity. pp. 27–48 in, Bottom Turbulence, (ed. J.C.J. Nihoul). Amsterdam: Elsevier.

    Google Scholar 

  • Davies, A.M., 1980. Application of the Galerkin method to the formulation of a three-dimensional nonlinear hydrodynamic numerical sea model. Appl. Math. Modelling, 4, pp. 245–256.

    Article  MATH  Google Scholar 

  • Davies, A.M., 1981a. Three-dimensional modelling of surges. pp. 45–47 in, Floods due to High Winds and Tides, (ed. D.H. Peregrine). London: Academic.

    Google Scholar 

  • Davies, A.M., 1981b. Three-dimensional hydrodynamic numerical models. Part I: A homogeneous ocean-shelf model. Part 2: A stratified model of the northern North Sea. pp. 270–426 in, The Norwegian Coastal Current, (ed. R. Saetre and M. Mork). University of Bergen.

    Google Scholar 

  • Davies, A.M., 1982a. Meteorologically-induced circulation on the North-West European continental shelf: from a three-dimensional numerical model. Oceanol. Acta, 5, pp. 269–280.

    Google Scholar 

  • Davies, A.M., 1982b. On computing the three-dimensional flow in a stratified sea using the Galerkin method. Appl. Math. Modelling, 6, pp. 347–362.

    Article  MATH  Google Scholar 

  • Davies, A.M., 1983. Formulation of a linear three-dimensional hydrodynamic sea model using a Galerkin-eigenfunction method. Int. J. Numer. Meth. Eng., 3, pp. 33–60.

    Article  MATH  Google Scholar 

  • Davies, A.M. and Furnes, G.K., 1980. Observed and computed M2 tidal currents in the North Sea. J. Phys. Oceanogr., 10, pp. 237–257.

    Article  ADS  Google Scholar 

  • Davies, A.M. and Owen, A., 1979. Three-dimensional numerical sea model using the Galerkin method with a polynomial basis set. Appl. Math. Modelling, 3, pp. 421–428.

    Article  MATH  Google Scholar 

  • Defant, A., 1961. Physical Oceanography (Vol. 1 ). Oxford: Pergamon.

    Google Scholar 

  • Dobroklonskiy, S.V., 1969. Drift currents in the sea with an exponentially decaying eddy viscosity coefficient. Oceanology, 9, pp. 19–25.

    Google Scholar 

  • Ekman, V.W., 1905. On the influence of the Earth’s rotation on ocean currents. Ark. Mat. Astr. Fys., 2 (11), pp. 1–52.

    Google Scholar 

  • Fjeldstad, J.E., 1929. Ein Beitrag zur Theorie der winderzeugten Meeresströmungen. Gerlands Bietr. Geophys., 23. pp. 237–247.

    MATH  Google Scholar 

  • Fjeldstad, J.E., 1930. Ein Problem aus der Windstom-theorie. Z. Angew. Math. Mech., 10, pp. 121–137.

    Article  MATH  Google Scholar 

  • Fjeldstad, J.E., 1964. Internal waves of tidal origin. Part 1: Theory and analysis of observations. Geophys. Publr., 25 (5), pp. 1–73.

    Google Scholar 

  • Forristall, G.Z., 1974. Three-dimensional structure of storm-generated currents. J. Geophys. Res., 79, pp. 2721–2729.

    Article  ADS  Google Scholar 

  • Forristall, G.Z., 1980. A two-layer model for hurricane-driven currents on an irregular grid. J. Phys. Oceanogr., 9, pp. 1417–1438.

    Article  ADS  Google Scholar 

  • Forristall, G.Z., Hamilton, R.C. and Cardone, V.J., 1977. Continental shelf currents in tropical storm Delia: observations and theory. J. Phys. Oceanogr., 7, pp. 532–546.

    Article  ADS  Google Scholar 

  • Gedney, R.T. and Lick, W., 1972. Wind-driven currents in Lake Erie. J. Geophys. Res., 77, pp. 2714–2723.

    Article  ADS  Google Scholar 

  • Gill, A.E., 1982. Atmosphere-Ocean Dynamics. New York: Academic.

    Google Scholar 

  • Heaps, N.S., 1961. Seiches in a narrow lake, uniformly stratified in three layers. Geophys. J. R. astr. Soc., 5, pp. 134–156.

    Article  MATH  Google Scholar 

  • Heaps, N.S., 1972. On the numerical solution of the three-dimensional hydrodynamical equations for tides and storm surges. Mém. Soc. r. sci. Liège, ser. 6, 2, pp. 143–180.

    MathSciNet  Google Scholar 

  • Heaps, N.S., 1974. Development of a three-dimensional numerical model of the Irish Sea. Rapp. P.-v. Réun. Cons. perm. in Explor. Mer, 167, pp. 147–162.

    Google Scholar 

  • Heaps, N.S., 1976. On formulating a non-linear numerical model in three-dimensions for tides and storm surges. pp. 368–387 in, Computing Methods in Applied Sciences, (ed. R. Glowinski and J.L. Lions). Berlin: Springer-Verlag.

    Google Scholar 

  • Heaps, N.S., 1980. Spectral method for the numerical solution of the three-dimensional hydrodynamic equations for tides and surges. pp. 75–90 in, Mathematical Modelling of Estuarine Physics, (ed. J. Sündermann and K.-P.Holz). Berlin: Springer-Verlag.

    Google Scholar 

  • Heaps, N.S., 1981. Three-dimensional model for tides and surges with vertical eddy viscosity prescribed in two-layers. I. Mathematical formulation. Geophys. J. R. astr. Soc., 64, pp. 291302.

    Google Scholar 

  • Heaps, N.S. 1983. Development of a three-layered spectral model for the motion of a stratified shelf sea. I. Basic equations. pp. 336400 in, Physical Oceanography of Coastal and Shelf Seas, (ed. B. Johns). Amsterdam: Elsevier.

    Google Scholar 

  • Heaps, N.S. and Jones, J.E., 1975. Storm surge computations for the Irish Sea using a three-dimensional numerical model. Mém. Soc. r. sci. Liège, Ser. 6, 7, pp. 289–333.

    Google Scholar 

  • Heaps, N.S. and Jones, J.E., 1981. Three-dimensional model for tides and surges with vertical eddy viscosity prescribed in two layers. II. Irish Sea with bed friction layer. Geophys. J. R. astr. Soc., 64, pp. 303–320.

    Article  MATH  Google Scholar 

  • Heaps, N.S. and Jones, J.E., 1984. Development of a three-layered spectral model for the motion of a stratified sea. II. Experiments with a rectangular basin representing the Celtic Sea. pp. 401465 in, Physical Oceanography of Coastal and Shelf Seas, (ed. B. Johns). Amsterdam: Elsevier.

    Google Scholar 

  • Heaps, N.S. and Ramsbottom, A.E., 1966. Wind effects on the water in a narrow two-layered lake. Phil. Trans. Roy. Soc. A, 259, pp. 391–430.

    Article  ADS  Google Scholar 

  • Hidaka, K., 1933. Non-stationary ocean currents. Mem. Imp. Mar. Obs.•Kobe, 5, pp. 141–266.

    Google Scholar 

  • Jelesnianski, C.P., 1967. Numerical computations of storm surges with bottom stress. Mon. Weather Rev., 95, pp. 740–756.

    Article  ADS  Google Scholar 

  • Jelesnianski, C.P., 1970. Bottom stress time history in linearized equations of motion for storm surges. Mon. Weather Rev., 98, pp. 462–478.

    Article  ADS  Google Scholar 

  • Kielmann, J. and Kowalik, Z., 1980. A bottom stress formulation for storm surge problems. Oceanol. Acta, 3, pp. 51–58.

    Google Scholar 

  • Lai, R.Y.S. and Rao, D.B., 1976. Wind drift currents in deep sea with variable eddy viscosity. Arch. Met. Geophys. Bioklim. A, 25, pp. 131–140.

    Article  Google Scholar 

  • Madsen, O.S., 1977. A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr., 7, pp. 248–255.

    Article  ADS  Google Scholar 

  • McCreary, J.P., 1981a. A linear stratified ocean model of the equatorial undercurrent. Phil. Trans. Roy. Soc. A, 298, pp. 603–635.

    Article  MathSciNet  ADS  Google Scholar 

  • McCreary, J.P., 1981b. A linear stratified ocean model of the coastal undercurrent. Phil. Trans. Roy. Soc. A, 302, pp. 385–413.

    Article  ADS  Google Scholar 

  • Mork, M., 1968. The response of a stratified sea to atmospheric forces. Geophysical Institute, University of Bergen.

    Google Scholar 

  • Mork, M., 1971. On the time-dependent motion induced by wind and atmospheric pressure in a continuously stratified ocean of varying depth. Geophysical Institute, University of Bergen.

    Google Scholar 

  • Mortimer, C.H., 1952. Water movements in lakes during summer stratification; evidence from the distribution of temperature in Windermere. Phil. Trans. Roy. Soc. B, 236, pp. 355–404.

    Article  ADS  Google Scholar 

  • Mortimer, C.H., 1953. The resonant response of stratified lakes to wind. Schweiz. Z. Hydrol., 15, pp. 94–151.

    Google Scholar 

  • Mortimer, C.H., 1961. Motion in thermoclines. Verh. Internat. Verein. Limnol., 14, pp. 79–83.

    Google Scholar 

  • Mortimer, C.H., 1974. Lake hydrodynamics. Mitt. Internat. Verein. Limnol., 20, pp. 124–197.

    Google Scholar 

  • Munk, W.H. and Anderson, E.R., 1948. Notes on a theory of the thermocline. J. Mar. Res., 7, pp. 276–295.

    Google Scholar 

  • Pearce, B.R. and Cooper, C.K., 1981. Numerical circulation model for wind induced flow. J. Hydraul. Div. Am. Soc. Civ. Engrs, 107 (HY3), pp. 285–302.

    Google Scholar 

  • Platzman, G.W., 1963. The dynamical prediction of wind tides on Lake Erie. Meteorol. Monogr., 4 (26), 44 pp.

    Google Scholar 

  • Pond, S. and Pickard, G.L., 1978. Introductory Dynamic Oceanography. Oxford: Pergamon.

    Google Scholar 

  • Proudman, J., 1953. Dynamical Oceanography. London: Methuen.

    Google Scholar 

  • Ramming, H.G. and Kowalik, Z., 1980. Numerical modelling of marine hydrodynamics. Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fish. Aquat. SCI. 203, pp. 1–146.

    Google Scholar 

  • Svensson, U., 1979. The structure of the turbulent Ekman layer. Tellus, 31, pp. 340–350.

    Article  ADS  Google Scholar 

  • Sverdrup, H.U., Johnson, M.M. and Fleming, R.H., 1946. The Oceans, their physics, chemistry and general biology. New York: Prentice Hall.

    Google Scholar 

  • Thomas, J.H., 1975. A theory of steady wind-driven currents in shallow water with variable eddy viscosity. J. Phys. Oceanogr., 5, pp. 136–142.

    Article  ADS  Google Scholar 

  • Welander, P., 1957. Wind action on a shallow sea: some generalizations of Ekman’s theory. Tellus, 9, pp. 45–52.

    Article  MathSciNet  ADS  Google Scholar 

  • Witten, A.J. and Thomas, J.H., 1976. Steady wind-driven currents in a large lake with depth-dependent eddy viscosity. J. Phys. Oceanogr., 6, pp. 85.-92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Wien

About this chapter

Cite this chapter

Heaps, N.S. (1984). Vertical Structure of Current in Homogeneous and Stratified Waters. In: Hutter, K. (eds) Hydrodynamics of Lakes. International Centre for Mechanical Sciences, vol 286. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2634-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2634-9_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81812-1

  • Online ISBN: 978-3-7091-2634-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics