Advertisement

Nonlinear Internal Waves

  • Lawrence A. Mysak
Part of the International Centre for Mechanical Sciences book series (CISM, volume 286)

Abstract

For centuries sea-going explorers and navigators have been aware of the dangers associated with large-amplitude surface gravity waves. Particularly frightening are the giant waves commonly found around the southern tips of South Africa and South America. Today’s explorer searching for submarine resources such as oil and minerals has to be on the look out for an additional potentially dangerous denizen in the ocean — the large-amplitude internal wave (see Fig. 1). Such slowly propagating underwater waves can have amplitudes of 100 m and more, and associated current speeds of up to a few meters per second. With the approach of a train of these waves, a vessel conducting exploratory drilling must take the slack out of its drilling riser (protective covering of the drill shaft) and cease drilling operations. Clearly, as well as having an intrinsic beauty for all of us to behold, large (nonlinear) internal waves have a tremendous impact on technology and engineering developments in the ocean.

Keywords

Solitary Wave Internal Wave Phase Speed Solitary Wave Solution Stratify Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz, M. and H. Segur, 1981. Solitons and the Inverse Scattering Transform. Soc. Industr. Appl. Math., 425 pp.CrossRefGoogle Scholar
  2. Apel, J.R., H.M. Byrne, J.R. Proni and R.L. Charnell, 1975. Observations of oceanic internal and surface waves from the earth resources technology satellite. J. Geophys. Res., 80, pp. 865–881.CrossRefADSGoogle Scholar
  3. Benjamin, T.B., 1966. Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25, pp. 241–270.MathSciNetCrossRefMATHADSGoogle Scholar
  4. Benjamin, T.B., 1967. Internal waves of permanent form in fluids of great depth. J. Fluid Mech., 29, pp. 559–592.CrossRefMATHADSGoogle Scholar
  5. Cairns, J.L., 1967. Asymmetry of internal tidal waves in shallow coastal waters. J. Geophys. Res., 72, pp. 3563–3565.CrossRefADSGoogle Scholar
  6. Christie, D.R., K.J. Muirhead and A.L. Hales, 1978. On solitary waves in the atmosphere. J. Atmos. Sci., 35, pp. 805–825.CrossRefADSGoogle Scholar
  7. Christie, D.R., K.J. Muirhead and A.L. Hales, 1979. Intrusive density flows in the lower troposphere: a source of atmospheric soli-tons. J. Geophys. Res., 84, pp. 4959–4970.CrossRefADSGoogle Scholar
  8. Clarke, R.H., R.K. Smith and D.G. Reid, 1981. The Morning Glory of the Gulf of Carpentaria: an atmospheric undular bore. Mon. Weather Rev., 109, pp. 1726–1750.CrossRefADSGoogle Scholar
  9. Davis, R.E. and A. Acrivos, 1967. Solitary internal waves in deep water. J. Fluid Mech., 29, pp. 593–607.CrossRefMATHADSGoogle Scholar
  10. De Vries, G., 1894. Bijdrage tot de kennis der lange golven. Doctoral dissertation, Univ. of Amsterdam.Google Scholar
  11. Djordjevic, V.D. and L.D. Redekopp, 1978. The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr., 8, pp. 1016–1024.CrossRefADSGoogle Scholar
  12. Farmer, D.M., 1978. Observations of long nonlinear internal waves in a lake. J. Phys. Oceanogr. 8, pp. 63–73.MathSciNetCrossRefADSGoogle Scholar
  13. Farmer, D.M. and J.D. Smith, 1978. Nonlinear internal waves in a fjord. In: “Hydrodynamics of Estuaries and Fjords”, edit. by J.C.J. Nihoul, pp. 465–493, Elsevier.Google Scholar
  14. Gardiner, C.S., J.M. Greene, M.D. Kruskal and R.M. Miura, 1967. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett., 19, pp. 1095–1097.CrossRefADSGoogle Scholar
  15. Gargett, A.E., 1976. Generation of internal waves in the Strait of Geor- gia, British Columbia. Deep-Sea Res., 23, pp. 17–32.Google Scholar
  16. Gear, J.A. and R. Grimshaw, 1983. A second-order theory for solitary waves in shallow fluids. Phys. Fluids, 26, pp. 14–29.MathSciNetCrossRefMATHADSGoogle Scholar
  17. Grimshaw, R., 1978. Long nonlinear internal waves in channels of arbitra- ry cross-section. J. Fluid Mech., 86, pp. 415–431.MathSciNetCrossRefMATHADSGoogle Scholar
  18. Grimshaw, R., 1979. Slowly varying solitary waves I. Korteweg-de Vries equation. Proc. Roy. Soc. London, A, 368, pp. 359–375.MathSciNetCrossRefMATHADSGoogle Scholar
  19. Grimshaw, R., 1980/81. Solitary waves in a compressible fluid. Pure Appl. Geophys., 119, pp. 780–797.Google Scholar
  20. Grimshaw, R., 1981a. Evolution equations for long, nonlinear internal waves in stratified shear flows. Studies Appl. Math., 65, pp. 159–188.MathSciNetMATHGoogle Scholar
  21. Grimshaw, R., 1981b. Slowly varying solitary waves in deep fluids. Proc. Roy. Soc. London, A, 376, pp. 319–332.MathSciNetCrossRefMATHADSGoogle Scholar
  22. Grimshaw, R., 1981c. A second-order theory for solitary waves in deep fluids. Phys. Fluid, 24, pp. 1611–1618.MathSciNetCrossRefMATHADSGoogle Scholar
  23. Grimshaw, R., 1983. Solitary waves in density stratified fluids. In: “Nonlinear Deformation Waves”. IUTAM Symposium, Tallinn, 1982, ed. Grimshaw, R., pp. 431–447, Springer.Google Scholar
  24. Halpern, D., 1971. Observations of short-period internal waves in Massachusetts Bay. J. Marine Res., 29, pp. 116–132.Google Scholar
  25. Haury, L.R., M.G. Briscoe and M.H. Orr, 1979. Tidally generated internal wave packets in Massachusetts Bay. Nature, 278, pp. 312–317.CrossRefADSGoogle Scholar
  26. Holyer, J.Y., 1979. Large amplitude interfacial waves. J. Fluid Mech., 93, pp. 433–448.CrossRefMATHADSGoogle Scholar
  27. Hunkins, K. and M. Fliegel, 1973. Internal modular surges in Seneca Lake: a natural occurrence of solitons. J. Geophys. Res., 78, pp. 539–548.CrossRefADSGoogle Scholar
  28. Joseph, R.I., 1977. Solitary waves in a finite-depth fluid. J. Phys., A, 10, pp. L 225–227.Google Scholar
  29. Kao, T.W. and H-P. Pao, 1980. Wake collapse in the thermocline and inter- nal solitary waves. J. Fluid Mech., 97, pp. 117–127.ADSGoogle Scholar
  30. Keulegan, G.H., 1953. Characteristics of internal solitary waves. J. Res. Nat. Bureau of Standards, 51, pp. 133–140.CrossRefMATHGoogle Scholar
  31. Koop, C.G. and G. Butler, 1981. An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112, pp. 225–251.MathSciNetCrossRefMATHADSGoogle Scholar
  32. Korteweg, D.J. and G. de Vries, 1895. On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil. Mag., 39, pp. 422–443.CrossRefMATHGoogle Scholar
  33. Kruskal, M.D., 1978. The birth of the soliton. In: “Nonlinear Evolution Equations Solvable by the Spectral Transform”, edit. by F. Ca-logero, pp. 1–8, Pitman.Google Scholar
  34. Kubota, T., D.R.S. Ko and L.D. Dobbs, 1978. Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth. AIAA J. Hydronautics, 12, pp. 157–165.CrossRefGoogle Scholar
  35. LeBlond, P.H. and L.A. Mysak, 1978. Waves in the Ocean. Elsevier, 602 pp.Google Scholar
  36. Lee, C-Y. and R.C. Beardsley, 1974. The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res., 79, pp. 453–462.CrossRefADSGoogle Scholar
  37. Locke, L., 1980. Waves beneath the sea. The Lamp, summer 1980, pp. 21–23.Google Scholar
  38. Long, R.R., 1956. Solitary waves in one-and two-fluid systems. Tellus, 8, pp. 460–471.CrossRefADSGoogle Scholar
  39. Maslowe, S.A. and L.G. Redekopp, 1980. Long nonlinear waves in stratified shear flows. J. Fluid Mech., 101, pp. 321–348.MathSciNetCrossRefMATHADSGoogle Scholar
  40. Maxworthy, T., 1979. A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, pp. 338–346.CrossRefADSGoogle Scholar
  41. Maxworthy, T., 1980. On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid Mech., 96, pp. 47–64.CrossRefADSGoogle Scholar
  42. Miles, J.W., 1981. The Korteweg-de Vries equation: a historical essay. J. Fluid Mech., 106, pp. 131–147.CrossRefMATHADSGoogle Scholar
  43. Miura, R.M., 1976. The Korteweg-de Vries equation: a survey of results. SIAM Review, 18, pp. 412–459.MathSciNetCrossRefMATHADSGoogle Scholar
  44. Mork, G., B. Bjevik and S. Holte, 1980. Long internal waves in lakes. In: “Proceedings of Second International Symposium on Stratified Flows”, Vol. 2, pp. 988–997, Trondheim.Google Scholar
  45. Mortimer, C.H. and W. Horn, 1982. Internal wave dynamics and their implications for plankton biology in the Lake of Zurich. Vierteljahresschrift der Naturforschenden Gesellschaft, Zürich, 127, pp. 299–318.Google Scholar
  46. Mysak, L.A. and D.O. Hodgins, 1981. Preliminary study of internal solitary waves in Davis Strait. Report prepared for Aquitane Co. of Canada Ltd., 21 pp.Google Scholar
  47. Oman, G., 1982. Das Verhalten des geschichteten Zürichsees unter äusseren Windlasten. Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich, 185 pp.Google Scholar
  48. Ono, H., 1975. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan, 39, pp. 1082–1091.MathSciNetCrossRefADSGoogle Scholar
  49. Osborne, A.R. and T.L Burch, 1980. Internal solitons in the Andaman Sea. Science, 208, pp. 451–460.CrossRefADSGoogle Scholar
  50. Pullin, D.I. and R.H.J. Grimshaw, 1983a. Nonlinear interfacial progressive waves near a boundary in a Boussinesq fluid. Phys. Fluid, 26, pp. 897–905.MathSciNetCrossRefMATHADSGoogle Scholar
  51. Pullin, D.I. and R.H.J. Grimshaw, 1983b. Interfacial progressive gravity waves in a two-layer shear flow. Phys. Fluids, in press.Google Scholar
  52. Russell, J.S., 1844. Report on waves. Rep. Meet. Brit. Assoc. Adv. Sci., 14th, York, pp. 311–390, John Murray.Google Scholar
  53. Sandstrom, H. and J.A. Elliott, 1982. Internal tide and solitons on the Scotian shelf - a nutrient pump at work. Unpublished manuscript.Google Scholar
  54. Segur, H. and J.L. Hammack, 1982. Soliton models of long internal waves. J. Fluid Mech., 118, pp. 285–304.MathSciNetCrossRefMATHADSGoogle Scholar
  55. Segur, H. and J.L. Hammack, 1983. Long internal waves of moderate amplitude. I II: Layers of equal depth. Unpublished preprint.Google Scholar
  56. Thorpe, S.A., 1968. On the shape of progressive internal waves. Phil. Trans. Roy. Soc. London, A, 263, pp. 563–614.CrossRefMATHADSGoogle Scholar
  57. Thorpe, S.A., 1974. Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness. J. Fluid Mech., 69, pp. 509–527.CrossRefADSGoogle Scholar
  58. Thorpe, S.A., A. Hall and I. Crofts, 1972. The internal surge in Loch Ness. Nature, 237, pp. 96–98.CrossRefADSGoogle Scholar
  59. Thorpe, S.A. A.J. Hall, C. Taylor and J. Allen, 1977. Billows in Loch Ness. Deep-Sea Res., 24, pp. 371–379.CrossRefADSGoogle Scholar
  60. Tung, K.K., D.R.S. Ko and J.J. Chang, 1981. Weakly nonlinear internal waves in shear. Studies Appl. Math., 65, pp. 189–221.MathSciNetMATHGoogle Scholar
  61. Whitham, G.B., 1967. Non-linear dispersive waves. Proc. Roy. Soc. London, A, 299, pp. 6–25.CrossRefMATHADSGoogle Scholar
  62. Winant, C.D., 1974. Internal surges in coastal waters. J. Geophys. Res., 79, pp. 4523–4526.CrossRefADSGoogle Scholar
  63. Ziegenbein, J., 1970. Spatial observations of short, internal waves in the Strait of Gibraltar. Deep-Sea Res., 17, pp. 867–875.Google Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Lawrence A. Mysak
    • 1
  1. 1.Departments of Mathematics and OceanographyThe University of British ColumbiaVancouverCanada

Personalised recommendations