Fundamental Equations and Approximations

  • Kolumban Hutter
Part of the International Centre for Mechanical Sciences book series (CISM, volume 286)


The fundamental physical principles governing the motion of lake waters are the conservation laws of mass, momentum and energy. When diffusion processes of active or passive tracer substances are also considered, these laws must be complemented by transport equations of tracer mass. All these statements have the form of balance laws and in each of them flux terms arise, for which, in order to arrive at field equations, phenomenological postulates must be established. Hydrodynamics of lakes can be described by a Navier-Stokes-Fourier-Fick fluid or its simplifications. Its field equations are partial differential equations for the velocity vector v, the pressure p, the temperature T and, possibly, the mass concentrations cα (α =1, ..., N) of N different tracers (i.e. a suspended sediment, phosphate, nitrate, salinity, etc.). Boundary conditions for v, p, T and cα must also be established; in view of the fact that surfaces may deform and that evaporation may occur, these are not alltogether trivial. In fact the equations of motion of the free or of internal surtaces of density discontinuity — these are the so-called kinematic surface equations — serve as further field equations with the surface displacements as unknown boundary variables. Additional boundary conditions have to be formulated at the lake bottom and along the shore. The latter play a more significant role in physical limnology than in oceanography because for many phenomana the boundedness of the lake domain will affect the details of the processes while oceans may for the same processes be regarded as infinite or semi-infinite. This, for instance, implies that by and large wave spectra in the ocean are continuous, while they are often quantized in lakes.


Field Equation Potential Vorticity Fundamental Equation Jump Condition Adiabatic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arsen’yev, S.A., Dobroklonsky, S.V., Mamedov, R.M. and Shelkovnikov, N.K., 1975. Direct measurements of small scale marine turbulence characteristics from a stationary platform in the open sea. Izs., Atmos. Ocean Phys., 11, pp. 845–850.Google Scholar
  2. Assaf, G.,.Gerard, R. and Gordon, A.L., 1971. Some mechanics of ocean mixing revealed in aerial photographs. J. Geophys. Res. 76, pp. 6550–6572.CrossRefADSGoogle Scholar
  3. Baker, J.R., 1980. Currents as a Function of Depth in the Water: Solution of a Linear Model. M.S. Thesis, University of Minnesota, Duluth.Google Scholar
  4. Batchelor, G.K., 1953. The Theory of Homogeneous Turbulence. Cambridge Monograph on Mechanics and Applied Mathematics. Cambridge University Press.Google Scholar
  5. Becker, E. and Bürger, W., 1976. Kontinuumsmechanik. B.G. Teubner, Stuttgart.Google Scholar
  6. Bowman, H.A, and Schoonover, R.M., 1976. Procedure for high precision density determinations by hydrostatic weighing. J. Res. Natl. Bureaux of Standards, 7/c, 3, 179.Google Scholar
  7. Bradshaw, P. 1976. Turbulence. Topics in Applied Physics. Springer Verlag, Berlin-Heidelberg-New York.Google Scholar
  8. Brennecke, H., 1921. Die ozeanographischen Arbeiten der Deutschen Antarktischen Expedition 1911–1912. Arch. dtsch. Seewarte, 39, 206.Google Scholar
  9. Bührer, H. and Ambühl, H.A., 1975. Die Einleitung von gereinigtem Abwasser in Seen. Schw. Z. Hydrologie, 37 (2), pp. 347–369.Google Scholar
  10. Chadwick, P., 1976. Continuum Mechanics. Concise Theory and Problems. George Allen and Unwin, London.Google Scholar
  11. Csanady, G.T., 1972. Frictional currents in the mixed layer at the sea surface. J. Phys. Oceanogr., 2, pp. 498–508.CrossRefADSGoogle Scholar
  12. Csanady, G.T. 1978. Water circulation and dispersal mechanisms. In: Lakes: Chemistry, Geology, Physics (Ed. A. Lerman ). Springer Verlag, New York-Heidelberg-Berlin.Google Scholar
  13. Defant, A., 1932. Die Gezeiten und inneren Gezeitenwellen des Atlantischen Ozenas. Wiss. Erg. Deut. Atlantische Expedition Meteor, 1925–1927, 7, 318.Google Scholar
  14. Durst, C.S., 1924. The relationship between wind and current. Quart. J. Roy. Met. Soc. 50, 113.CrossRefADSGoogle Scholar
  15. Ekman, V.W., 1905. On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys., 2 (11), 52 p.Google Scholar
  16. Ekman, V.W., 1923. Ueber Horizontalzirkulation bei winderzeugten Meeres- strömungen. Ark. Mat. Astron. Fys., 17 (26), 74 p.Google Scholar
  17. Ertel, H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Meteorolog. Z., 59, pp. 277–281.Google Scholar
  18. Fjeldstad, J.R., 1930. Ein Problem aus der Windstromtheorie. Z. Angew. Math. & Mech., 10, pp. 121–137.CrossRefMATHGoogle Scholar
  19. Fjeldstad, J.R., 1933. Wärmeleitung in Meer. Geofysiske Publikasjoner, Vol. 10, No. 7, 20 pp. Oslo.Google Scholar
  20. Greenspan, H.P., 1968. The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
  21. Heaps, N. 1972. On the numerical solution of the three dimensional hydrodynamical equations for tides and storm surges. Mem. Soc. R. Sci. Liege Ser., 6 (2), pp. 143–180.MathSciNetGoogle Scholar
  22. Heaps, N. and Jones J.E., 1975. Storm surge computations for the Irish Sea using a three dimensional numerical model. Mem. Soc. R. Sci. Liege Ser., 6 (7), pp. 289–333.Google Scholar
  23. Hidaka, K., 1933. Non-stationary ocean currents. Mem. Imp. Mar. Obs. Kobe, 5, pp. 141–266.Google Scholar
  24. Hinze, J.O., 1959. Turbulence. McGraw Hill, New York.Google Scholar
  25. Hoeber, H., 1972. Eddy thermal conductivity in the upper 12 m of the tro- pical Atlantic. J. Phys. Oceanogr., 2, pp. 303–304.CrossRefADSGoogle Scholar
  26. Horn, W., 1971. Die zeitliche Veränderlichkeit der Temperatur der ozeanischec, Deckschicht im Gebiet der grossen meteorbank. Meteor. Forsch. Ergebn. (A), No. 9, S. 42–51, Berlin-Stuttgart.Google Scholar
  27. Hunkins, K., 1966. Ekman drift currents in the arctic oceans. Deap Sea Res., 13, pp. 607–620.Google Scholar
  28. Rutter, K., 1983.. Theoretical Glaciology. Reidel Publishing Comp. Dordrecht-Boston.Google Scholar
  29. Hutter, K. and Trösch, J., 1975. Ueber die hydrodynamischen und thermodynamischen Grundlagen der Seezirkulation. Mitteilung No. 20 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich.Google Scholar
  30. Rutter, K., Oman, G. and Ramming, H.G., 1982. Wind-bedingte Strömungen des homogenen Zürichsees. Mitteilung No. 61 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich.Google Scholar
  31. Imboden, D.M. and Emerson, S., 1978. Natural radon and phosphorus as limnologic tracers: Horizontal and vertical diffusion in Greifen-see. Limnology & Oceanography, Vol. 23, pp. 77–90.CrossRefGoogle Scholar
  32. Jacobsen, J.P., 1931. Beiträge zur Hydrographie der Dänischen Gewässer. Komm. f. Havunders Medd. Ser. Hydr., 2 (2), 94.Google Scholar
  33. Jelesnianski, C.P., 1967. Numerical computations of storm surges with bottom stress. Mon. Weather Rev., 95, pp. 740–756.CrossRefADSGoogle Scholar
  34. Jelesnianski, C.P., 1970. Bottom-stress time-history in linearized equations of motion for storm surges. Mon. leather Rev., 98, pp. 462–478.CrossRefADSGoogle Scholar
  35. Jones, J.H., 1973. Vertical mixing in the equatorial undercurrent. J. Phys. Oceanogr., 3, pp. 286–296.CrossRefADSGoogle Scholar
  36. Kullenberg, G., 1972. Apparent horizontal diffusion in stratified shear flow. Tellus, 24, pp. 17–28.CrossRefADSGoogle Scholar
  37. Krauss, W., 1973. Dynamics of the homogeneous and the quasi-homogeneous ocean. Bornträger, Berlin.Google Scholar
  38. Lai, R.Y.S. and Rao, D.B., 1976. Wided drift currents in a deep sea with variable eddy viscosity. Arch. Meteor. Geophys. Bioklimat., A 25, pp. 131–140.CrossRefGoogle Scholar
  39. LeBlond, P.H. and Mysak, L.A., 1978. Waves in the Ocean. Elsevier Oceanography Series. Elsevier Scientific Publishers Comp., Amsterdam, Oxford, New York.Google Scholar
  40. Mamayev, O.I., 1958. The influence of stratification on vertical turbulent mixing in the sea. Izv. Geophys. Ser., 1, pp. 870–875.Google Scholar
  41. Monin, A.S. and Yalgon, A.M., 1971. Statistical Fluid Dynamics. MIT Press, Cambridge, Mass.Google Scholar
  42. Müller, I., 1973. Rationale Thermodynamik. Die Grundlagen der Materialtheorie. Bertelsmann Universitätsverlag..Google Scholar
  43. Munk, W.H. and Anderson, E.R., 1948. Notes on a theory of the thermocline. J. Mar. Res., 7, pp. 277–295.Google Scholar
  44. Murthy, C.R., 1975. Horizontal diffusion characteristics in Lake Ontario. J. Phys. Oceanogr., 6, pp. 76–84.MathSciNetCrossRefADSGoogle Scholar
  45. Nan’niti, T., 1964. Some observed results of oceanic turbulence. In: Studies on Oceanography. K. Yoshida Editor, University of Washington Press.Google Scholar
  46. Neumann, G. and Pierson, W.J., 1964. Principals of Physical Oceanography. Prentice-Hall.Google Scholar
  47. Okubo. A., 1971. Oceanic diffusion diagrams, Deap Sea Res., 18, pp. 789–802.Google Scholar
  48. Oman, G., 1982. Das Verhalten des geschichteten Zürichsees unter äusseren Windlasten. Mittelung No. 60 der Versuchsanstalt für Wasserbau. Hydrologie und Glaziologie, ETH, Zürich.Google Scholar
  49. Ostapoff, F. and Worthem, S., 1974. The intradiurnal temperature variations in the upper ocean layer. J. Phys. Oceanogr., 4, pp. 601612.Google Scholar
  50. Pedlosky, J., 1982. Geophysical Fluid Dynamics. Springer Verlag, Berlin - Heidelberg - New York.Google Scholar
  51. Phillips, O.M., 1969. The dynamics of the upper ocean. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press.Google Scholar
  52. Platzman, G.W., 1963. The dynamic prediction of Wind tides on Lake Erie. Meteorol. Monogr., 4 (26), 44 p.Google Scholar
  53. Prümm, O., 1974. Height dependence of diurnal variations of wind velocity and water temperatures near the air-sea interface of the tropical Atlantic. Boundary-Layer Meteorol., 6, pp. 341–347.ADSGoogle Scholar
  54. Ramming, H.G. and Kowalik, Z., 1980. Numerical Modelling of Marine Hydrodynamics. Application to Dynamic Physical Processes. Elsevier Oceanography Series. Elsevier Scientific Publishing Comp. Amsterdam, Oxford, New York.Google Scholar
  55. Shuter, V., Oman, G., Stortz, K. and Sydor, M., 1978. Turbidity dispersion in Lake Superior through use of landsat data. J. Great Lakes Res., 4, pp. 359–360.CrossRefGoogle Scholar
  56. Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fisheries and Aquatic Sci., No. 203.Google Scholar
  57. Spalding, D.B., 1982. Turbulence Models, a Lecture Course. Imperial College of Science and Tehcnology.Google Scholar
  58. Suda, K., 1936. On the dissipation of energy in the density current. Geophys. Mag., 10, pp. 131–243.Google Scholar
  59. Sverdrup, H.U., 1926. Dynamics of tides on the North Siberian Shelf. Results of the Maud Expedition. Geofyisks Publikasjoners, 4, 75.Google Scholar
  60. Thomas, J.H., 1975. A theory of wind-driven currents in shallow water with variable eddy viscosty. J. Phys. Oceanogr., 5, pp. 136–142.CrossRefADSGoogle Scholar
  61. Thorade, H., 1914. Die Geschwindigkeit von Triftströmungen und die Ekman’ sche Theorie. Ann. d. Hydrogr. u. Math. Meteor., 42, pp. 379391.Google Scholar
  62. Thorade, H., 1928. Gezeitenuntersuchungen in der Deutschen Bucht der Nordsee. Arch. Dtsch. Seewarte, 46, pp. 1–85.Google Scholar
  63. Tilton, L.W. and Taylor, J.K., 1937. Accurate representation of the refractivity and density of distilled water as a function of temperature. J. Res. Nat. Bureaux of Standards, 18, 205.CrossRefGoogle Scholar
  64. Wang, C.C. and Truesdell, C.A., 1973. Introduction to Elasticity. Noordhoff International Publishing, Leyden.MATHGoogle Scholar
  65. Welander, P, 1957. Wind action on a shallow sea: Some generalizations of Ekman’s theory. Tellus, 9, pp. 45–52.MathSciNetCrossRefADSGoogle Scholar
  66. Williams, R.B. and Gibson, C.H., 1974. Direct measurements of turbulence in the Pacific Equatorial undercurrent. J. Phys. Oceanogr., 4, pp. 104–108.CrossRefADSGoogle Scholar
  67. Witten, A,J. and Thomas J.H., 1976. Steady wind-driven currents in a large lake with depth-dependent eddy viscosity. J. Phys. Oceanogr., 6, pp. 85–92.CrossRefADSGoogle Scholar
  68. Wüst, G., 1975. Strömungsgeschwindigkeiten in Tiefen- und Bodenwasser des Atlantischen Ozeans. Deap Sea Res. Papers in Marine Biology and Ocenaography, pp. 373–392.Google Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Kolumban Hutter
    • 1
  1. 1.Laboratory of HydraulicsHydrology and GlaciologyZurichSwitzerland

Personalised recommendations