Skip to main content

Fundamental Equations and Approximations

  • Chapter
Hydrodynamics of Lakes

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 286))

Abstract

The fundamental physical principles governing the motion of lake waters are the conservation laws of mass, momentum and energy. When diffusion processes of active or passive tracer substances are also considered, these laws must be complemented by transport equations of tracer mass. All these statements have the form of balance laws and in each of them flux terms arise, for which, in order to arrive at field equations, phenomenological postulates must be established. Hydrodynamics of lakes can be described by a Navier-Stokes-Fourier-Fick fluid or its simplifications. Its field equations are partial differential equations for the velocity vector v, the pressure p, the temperature T and, possibly, the mass concentrations cα (α =1, ..., N) of N different tracers (i.e. a suspended sediment, phosphate, nitrate, salinity, etc.). Boundary conditions for v, p, T and cα must also be established; in view of the fact that surfaces may deform and that evaporation may occur, these are not alltogether trivial. In fact the equations of motion of the free or of internal surtaces of density discontinuity — these are the so-called kinematic surface equations — serve as further field equations with the surface displacements as unknown boundary variables. Additional boundary conditions have to be formulated at the lake bottom and along the shore. The latter play a more significant role in physical limnology than in oceanography because for many phenomana the boundedness of the lake domain will affect the details of the processes while oceans may for the same processes be regarded as infinite or semi-infinite. This, for instance, implies that by and large wave spectra in the ocean are continuous, while they are often quantized in lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arsen’yev, S.A., Dobroklonsky, S.V., Mamedov, R.M. and Shelkovnikov, N.K., 1975. Direct measurements of small scale marine turbulence characteristics from a stationary platform in the open sea. Izs., Atmos. Ocean Phys., 11, pp. 845–850.

    Google Scholar 

  • Assaf, G.,.Gerard, R. and Gordon, A.L., 1971. Some mechanics of ocean mixing revealed in aerial photographs. J. Geophys. Res. 76, pp. 6550–6572.

    Article  ADS  Google Scholar 

  • Baker, J.R., 1980. Currents as a Function of Depth in the Water: Solution of a Linear Model. M.S. Thesis, University of Minnesota, Duluth.

    Google Scholar 

  • Batchelor, G.K., 1953. The Theory of Homogeneous Turbulence. Cambridge Monograph on Mechanics and Applied Mathematics. Cambridge University Press.

    Google Scholar 

  • Becker, E. and Bürger, W., 1976. Kontinuumsmechanik. B.G. Teubner, Stuttgart.

    Google Scholar 

  • Bowman, H.A, and Schoonover, R.M., 1976. Procedure for high precision density determinations by hydrostatic weighing. J. Res. Natl. Bureaux of Standards, 7/c, 3, 179.

    Google Scholar 

  • Bradshaw, P. 1976. Turbulence. Topics in Applied Physics. Springer Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Brennecke, H., 1921. Die ozeanographischen Arbeiten der Deutschen Antarktischen Expedition 1911–1912. Arch. dtsch. Seewarte, 39, 206.

    Google Scholar 

  • Bührer, H. and Ambühl, H.A., 1975. Die Einleitung von gereinigtem Abwasser in Seen. Schw. Z. Hydrologie, 37 (2), pp. 347–369.

    Google Scholar 

  • Chadwick, P., 1976. Continuum Mechanics. Concise Theory and Problems. George Allen and Unwin, London.

    Google Scholar 

  • Csanady, G.T., 1972. Frictional currents in the mixed layer at the sea surface. J. Phys. Oceanogr., 2, pp. 498–508.

    Article  ADS  Google Scholar 

  • Csanady, G.T. 1978. Water circulation and dispersal mechanisms. In: Lakes: Chemistry, Geology, Physics (Ed. A. Lerman ). Springer Verlag, New York-Heidelberg-Berlin.

    Google Scholar 

  • Defant, A., 1932. Die Gezeiten und inneren Gezeitenwellen des Atlantischen Ozenas. Wiss. Erg. Deut. Atlantische Expedition Meteor, 1925–1927, 7, 318.

    Google Scholar 

  • Durst, C.S., 1924. The relationship between wind and current. Quart. J. Roy. Met. Soc. 50, 113.

    Article  ADS  Google Scholar 

  • Ekman, V.W., 1905. On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys., 2 (11), 52 p.

    Google Scholar 

  • Ekman, V.W., 1923. Ueber Horizontalzirkulation bei winderzeugten Meeres- strömungen. Ark. Mat. Astron. Fys., 17 (26), 74 p.

    Google Scholar 

  • Ertel, H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Meteorolog. Z., 59, pp. 277–281.

    Google Scholar 

  • Fjeldstad, J.R., 1930. Ein Problem aus der Windstromtheorie. Z. Angew. Math. & Mech., 10, pp. 121–137.

    Article  MATH  Google Scholar 

  • Fjeldstad, J.R., 1933. Wärmeleitung in Meer. Geofysiske Publikasjoner, Vol. 10, No. 7, 20 pp. Oslo.

    Google Scholar 

  • Greenspan, H.P., 1968. The Theory of Rotating Fluids. Cambridge University Press.

    Google Scholar 

  • Heaps, N. 1972. On the numerical solution of the three dimensional hydrodynamical equations for tides and storm surges. Mem. Soc. R. Sci. Liege Ser., 6 (2), pp. 143–180.

    MathSciNet  Google Scholar 

  • Heaps, N. and Jones J.E., 1975. Storm surge computations for the Irish Sea using a three dimensional numerical model. Mem. Soc. R. Sci. Liege Ser., 6 (7), pp. 289–333.

    Google Scholar 

  • Hidaka, K., 1933. Non-stationary ocean currents. Mem. Imp. Mar. Obs. Kobe, 5, pp. 141–266.

    Google Scholar 

  • Hinze, J.O., 1959. Turbulence. McGraw Hill, New York.

    Google Scholar 

  • Hoeber, H., 1972. Eddy thermal conductivity in the upper 12 m of the tro- pical Atlantic. J. Phys. Oceanogr., 2, pp. 303–304.

    Article  ADS  Google Scholar 

  • Horn, W., 1971. Die zeitliche Veränderlichkeit der Temperatur der ozeanischec, Deckschicht im Gebiet der grossen meteorbank. Meteor. Forsch. Ergebn. (A), No. 9, S. 42–51, Berlin-Stuttgart.

    Google Scholar 

  • Hunkins, K., 1966. Ekman drift currents in the arctic oceans. Deap Sea Res., 13, pp. 607–620.

    Google Scholar 

  • Rutter, K., 1983.. Theoretical Glaciology. Reidel Publishing Comp. Dordrecht-Boston.

    Google Scholar 

  • Hutter, K. and Trösch, J., 1975. Ueber die hydrodynamischen und thermodynamischen Grundlagen der Seezirkulation. Mitteilung No. 20 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich.

    Google Scholar 

  • Rutter, K., Oman, G. and Ramming, H.G., 1982. Wind-bedingte Strömungen des homogenen Zürichsees. Mitteilung No. 61 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich.

    Google Scholar 

  • Imboden, D.M. and Emerson, S., 1978. Natural radon and phosphorus as limnologic tracers: Horizontal and vertical diffusion in Greifen-see. Limnology & Oceanography, Vol. 23, pp. 77–90.

    Article  Google Scholar 

  • Jacobsen, J.P., 1931. Beiträge zur Hydrographie der Dänischen Gewässer. Komm. f. Havunders Medd. Ser. Hydr., 2 (2), 94.

    Google Scholar 

  • Jelesnianski, C.P., 1967. Numerical computations of storm surges with bottom stress. Mon. Weather Rev., 95, pp. 740–756.

    Article  ADS  Google Scholar 

  • Jelesnianski, C.P., 1970. Bottom-stress time-history in linearized equations of motion for storm surges. Mon. leather Rev., 98, pp. 462–478.

    Article  ADS  Google Scholar 

  • Jones, J.H., 1973. Vertical mixing in the equatorial undercurrent. J. Phys. Oceanogr., 3, pp. 286–296.

    Article  ADS  Google Scholar 

  • Kullenberg, G., 1972. Apparent horizontal diffusion in stratified shear flow. Tellus, 24, pp. 17–28.

    Article  ADS  Google Scholar 

  • Krauss, W., 1973. Dynamics of the homogeneous and the quasi-homogeneous ocean. Bornträger, Berlin.

    Google Scholar 

  • Lai, R.Y.S. and Rao, D.B., 1976. Wided drift currents in a deep sea with variable eddy viscosity. Arch. Meteor. Geophys. Bioklimat., A 25, pp. 131–140.

    Article  Google Scholar 

  • LeBlond, P.H. and Mysak, L.A., 1978. Waves in the Ocean. Elsevier Oceanography Series. Elsevier Scientific Publishers Comp., Amsterdam, Oxford, New York.

    Google Scholar 

  • Mamayev, O.I., 1958. The influence of stratification on vertical turbulent mixing in the sea. Izv. Geophys. Ser., 1, pp. 870–875.

    Google Scholar 

  • Monin, A.S. and Yalgon, A.M., 1971. Statistical Fluid Dynamics. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Müller, I., 1973. Rationale Thermodynamik. Die Grundlagen der Materialtheorie. Bertelsmann Universitätsverlag..

    Google Scholar 

  • Munk, W.H. and Anderson, E.R., 1948. Notes on a theory of the thermocline. J. Mar. Res., 7, pp. 277–295.

    Google Scholar 

  • Murthy, C.R., 1975. Horizontal diffusion characteristics in Lake Ontario. J. Phys. Oceanogr., 6, pp. 76–84.

    Article  MathSciNet  ADS  Google Scholar 

  • Nan’niti, T., 1964. Some observed results of oceanic turbulence. In: Studies on Oceanography. K. Yoshida Editor, University of Washington Press.

    Google Scholar 

  • Neumann, G. and Pierson, W.J., 1964. Principals of Physical Oceanography. Prentice-Hall.

    Google Scholar 

  • Okubo. A., 1971. Oceanic diffusion diagrams, Deap Sea Res., 18, pp. 789–802.

    Google Scholar 

  • Oman, G., 1982. Das Verhalten des geschichteten Zürichsees unter äusseren Windlasten. Mittelung No. 60 der Versuchsanstalt für Wasserbau. Hydrologie und Glaziologie, ETH, Zürich.

    Google Scholar 

  • Ostapoff, F. and Worthem, S., 1974. The intradiurnal temperature variations in the upper ocean layer. J. Phys. Oceanogr., 4, pp. 601612.

    Google Scholar 

  • Pedlosky, J., 1982. Geophysical Fluid Dynamics. Springer Verlag, Berlin - Heidelberg - New York.

    Google Scholar 

  • Phillips, O.M., 1969. The dynamics of the upper ocean. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press.

    Google Scholar 

  • Platzman, G.W., 1963. The dynamic prediction of Wind tides on Lake Erie. Meteorol. Monogr., 4 (26), 44 p.

    Google Scholar 

  • Prümm, O., 1974. Height dependence of diurnal variations of wind velocity and water temperatures near the air-sea interface of the tropical Atlantic. Boundary-Layer Meteorol., 6, pp. 341–347.

    ADS  Google Scholar 

  • Ramming, H.G. and Kowalik, Z., 1980. Numerical Modelling of Marine Hydrodynamics. Application to Dynamic Physical Processes. Elsevier Oceanography Series. Elsevier Scientific Publishing Comp. Amsterdam, Oxford, New York.

    Google Scholar 

  • Shuter, V., Oman, G., Stortz, K. and Sydor, M., 1978. Turbidity dispersion in Lake Superior through use of landsat data. J. Great Lakes Res., 4, pp. 359–360.

    Article  Google Scholar 

  • Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fisheries and Aquatic Sci., No. 203.

    Google Scholar 

  • Spalding, D.B., 1982. Turbulence Models, a Lecture Course. Imperial College of Science and Tehcnology.

    Google Scholar 

  • Suda, K., 1936. On the dissipation of energy in the density current. Geophys. Mag., 10, pp. 131–243.

    Google Scholar 

  • Sverdrup, H.U., 1926. Dynamics of tides on the North Siberian Shelf. Results of the Maud Expedition. Geofyisks Publikasjoners, 4, 75.

    Google Scholar 

  • Thomas, J.H., 1975. A theory of wind-driven currents in shallow water with variable eddy viscosty. J. Phys. Oceanogr., 5, pp. 136–142.

    Article  ADS  Google Scholar 

  • Thorade, H., 1914. Die Geschwindigkeit von Triftströmungen und die Ekman’ sche Theorie. Ann. d. Hydrogr. u. Math. Meteor., 42, pp. 379391.

    Google Scholar 

  • Thorade, H., 1928. Gezeitenuntersuchungen in der Deutschen Bucht der Nordsee. Arch. Dtsch. Seewarte, 46, pp. 1–85.

    Google Scholar 

  • Tilton, L.W. and Taylor, J.K., 1937. Accurate representation of the refractivity and density of distilled water as a function of temperature. J. Res. Nat. Bureaux of Standards, 18, 205.

    Article  Google Scholar 

  • Wang, C.C. and Truesdell, C.A., 1973. Introduction to Elasticity. Noordhoff International Publishing, Leyden.

    MATH  Google Scholar 

  • Welander, P, 1957. Wind action on a shallow sea: Some generalizations of Ekman’s theory. Tellus, 9, pp. 45–52.

    Article  MathSciNet  ADS  Google Scholar 

  • Williams, R.B. and Gibson, C.H., 1974. Direct measurements of turbulence in the Pacific Equatorial undercurrent. J. Phys. Oceanogr., 4, pp. 104–108.

    Article  ADS  Google Scholar 

  • Witten, A,J. and Thomas J.H., 1976. Steady wind-driven currents in a large lake with depth-dependent eddy viscosity. J. Phys. Oceanogr., 6, pp. 85–92.

    Article  ADS  Google Scholar 

  • Wüst, G., 1975. Strömungsgeschwindigkeiten in Tiefen- und Bodenwasser des Atlantischen Ozeans. Deap Sea Res. Papers in Marine Biology and Ocenaography, pp. 373–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Wien

About this chapter

Cite this chapter

Hutter, K. (1984). Fundamental Equations and Approximations. In: Hutter, K. (eds) Hydrodynamics of Lakes. International Centre for Mechanical Sciences, vol 286. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2634-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2634-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81812-1

  • Online ISBN: 978-3-7091-2634-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics