Standard Inelastic Shocks and the Dynamics of Unilateral Constraints

  • J. J. Moreau
Part of the International Centre for Mechanical Sciences book series (CISM, volume 288)


This paper is devoted to mechanical systems with a finite number of degrees of freedom; let q1,...,qn denote (possibly local) coordinates in the configuration manifold Q. In addition to the constraints, bilateral and frictionless, which have permitted such a finite-dimensional parametrization of Q, we assume the system submitted to a finite family of unilateral constraints whose geometrical effect is expressed by v inequalities
$${f_\alpha }\left( q \right) \leq 0$$
defining a closed region L of Q. As every greek index in the sequel, α takes its values in the set {1,2,...,v}. The v functions fα are supposed C1, with nonzero gradients, at least in some neighborhood of the respective surfaces fα = 0; for the sake of simplicity, we assume them independent of time.


Convex Cone Differential Inclusion Hausdorff Distance Tangent Cone Polar Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bressan, A., Incompatibilità dei teoremi di esistenza e di unicità del moto per un tipo molto comune e regolare di sistemi meccanici, Ann. Scuola Norm. Sup. Pisa, Ser. I II, 14, 333, 1960.MathSciNetGoogle Scholar
  2. 2.
    Delassus, E., Mémoire sur la théorie des liaisons finies unilatérales, Ann. Sci. Ecole Norm. Sup., 34, 95, 1917.MATHMathSciNetGoogle Scholar
  3. 3.
    Bouligand, G., Compléments et exercices sur la mécanique des solides, 2ème édition, Vuibert, Paris, 1945.Google Scholar
  4. 4.
    Bouligand, G., Mécanique rationnelle, 5ème édition, Vuibert, Paris, 1954.Google Scholar
  5. 5.
    Moreau, J.J., Les liaisons unilatérales et le principe de Gauss, C.R. Acad. Sci. Paris, 256, 871, 1963.MathSciNetGoogle Scholar
  6. 6.
    Moreau, J.J., Quadratic programming in mechanics: dynamics of one-sided constraints, SIAM J. Control, 4, 153, 1966 (Proceedings of the First International Congress on Programming and Control).Google Scholar
  7. 7.
    Moreau, J.J., Sur la naissance de la cavitation dans une conduite, C.R. Acad. Sci. Paris, 259, 3948, 1965.MathSciNetGoogle Scholar
  8. 8.
    Moreau, J.J., Principes extrémaux pour le problème de la naissance de la cavitation, J. de Mécanique, 5, 439, 1966.MathSciNetGoogle Scholar
  9. 9.
    Moreau, J.J., One-sided constraints in hydrodynamics, in Non linear Programming, Abadie, J., Ed., North-Holland Pub. Co., Amsterdam, 1967, 257.Google Scholar
  10. 10.
    Kilmister, C.W. and Reeve, J.E., Rational mechanics, Longmans, London, 1966.MATHGoogle Scholar
  11. 11.
    Moreau, J.J., Mécanique classique, Vol 2, Masson, Paris, 1971.MATHGoogle Scholar
  12. 12.
    Schatzman, M., Le système différentiel (d2u/dt2) + p(u) f avec conditions initiales, C.R. Acad. Sci. Paris, Série 1, 284, 603, 1977.MathSciNetGoogle Scholar
  13. 13.
    Schatzman, M., A class of non linear differential equations of 2nd order in time, J. Nonlinear Analysis, Theory, Methods and Appl., 2, 355, 1978.MATHMathSciNetGoogle Scholar
  14. 14.
    Buttazzo, G. and Percivale, D., Sull’approssimazione del problema del rimbalzo unidimensionale, Scuola Norm. Sup. Pisa, E.T.S. Pisa, 1980.Google Scholar
  15. 15.
    Buttazzo, G. and Percivale, D., The bounce problem on n-dimensional Riemannian manifolds, Scuola Norm. Sup. Pisa, E.T.S. Pisa, 1981.Google Scholar
  16. 16.
    Amerio, L. and Prouse, G., Study of the motion of a string vibrating against an obstacle, Rend. Mat., 8, 563, 1975.MATHMathSciNetGoogle Scholar
  17. 17.
    Schatzman, M., A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle, J. Math. Anal. Appl., 73, 138, 1980.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Cabannes, H. and Haraux, A., Mouvements presque-périodiques d’une corde vibrante en présence d’un obstacle fixe, rectiligne ou ponctual, Int. J. Non-linear Mechanics, 16, 449, 1981.ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Do, C., On the dynamic deformation of a bar against an obstacle, in Variational Methods in the Mechanics of Solids, S. Nemat-Nasser, Ed., Pergamon Press, 1980.Google Scholar
  20. 20.
    Moreau, J.J., Liaisons unilatérales sans frottement et chocs inélastiques, C.R. Acad. Sci. Paris, Série I I, 296, 1473, 1983.MathSciNetGoogle Scholar
  21. 21.
    Moreau, J.J., Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Equ., 26, 347, 1977.ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Abadie, J., On the Kuhn-Tucker theorem, in Non linear Programming, Abadie, J., Ed., North-Holland Pub. Co., Amsterdam, 1967, 17.Google Scholar
  23. 23.
    Moreau J.J., Décomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires, C.R. Acad. Sci. Paris, 255, 238, 1962.MATHMathSciNetGoogle Scholar
  24. 24.
    Moreau, J.J., Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93, 273, 1965.MATHGoogle Scholar
  25. 25.
    Moreau, J.J., On unilateral constraints, friction and plasticity, in New variational Techniques in Mathematical Physics, G. Capriz and G. Stampacchia, Eds., CIME II Ciclo 1973, Edizioni Cremonese, Roma, 1974, 173.Google Scholar
  26. 26.
    Halphen, B. and Nguyen, Q.S., Sur les matériaux standards généralisés, J. de Mécanique 14, 39, 1975.MATHGoogle Scholar
  27. 27.
    Moreau, J.J., Sur les mesures différentielles de fonctions vecto-rielles, in Séminaire d’Analyse Convexe, Montpellier, 5, exp. 17, 1975.Google Scholar
  28. 28.
    Moreau, J.J., Sur les mesures différentielles et certains problèmes d’évolution, C.R. Acad. Sci. Paris, Sér. A-B, 282, 837, 1976.MATHMathSciNetGoogle Scholar
  29. 29.
    Moreau, J.J., Multiapplications à rétraction finie, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. Ser. IV, 1, 169, 1974.Google Scholar
  30. 30.
    Bourbaki, N., Intégration, Chap. 6 (Eléments de Mathématique, fasc. XXV ), Hermann, Paris, 1959.Google Scholar
  31. 31.
    Moreau, J.J., Approximation en graphe d’une évolution discontinue, RAIRO Analyse Numérique, 12, 75, 1978.MATHMathSciNetGoogle Scholar
  32. 32.
    Brezis, H., Problèmes unilatéraux, J. Math. Pures Appl., 51, 1, 1972.MATHMathSciNetGoogle Scholar
  33. 33.
    Brezis, H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Math. Studies, 5, North-Holland, Amsterdan, 1973.Google Scholar

Copyright information

© Springer-Verlag Wien 1985

Authors and Affiliations

  • J. J. Moreau
    • 1
  1. 1.Institut de MathématiquesUniversité des Sciences et Techniques du LanguedocMontpellierFrance

Personalised recommendations