Advertisement

Locking Materials and Hysteresis Phenomena

  • P. M. Suquet
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 288)

Abstract

A modelling of mechanical hysteresis phenomena, accounting for internal locking of materials is proposed. A mathematical discussion of ideal locking materials is given. A special emphasis is set on the locking limit analysis.

Keywords

Limit Load Hysteresis Phenomenon Unilateral Constraint Plastic Limit Analysis Admissible Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On propose un modèle d’hystérésis mécanique, tenant compte des effets de blocage interne de la matière. Le cas des matériaux A blocage est discuté sous un angle mathématique. On porte une attention particulière A l’analyse limite de blocage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prager, W., On ideal locking materials, Tnansactions of the Society of Rheoeogy, 1, 1957, p. 169–175.CrossRefMATHGoogle Scholar
  2. 2.
    Prager, W., Unilateral constraints in Mechanics of Continua, Estnatto dagei atti des Simposio Lagnangiano, Academia delle Scienze di Torino, 1964, p. 1–11.Google Scholar
  3. 3.
    Prager, W., Elastic solids of limited compressibility, Pnoceedings of the 9 Int. Congness of Appe. Mech., Brussels, 1958, 5, p. 205–211.Google Scholar
  4. 4.
    Demengel, F., Suquet, P., On locking materials, to be published.Google Scholar
  5. 5.
    Halphen, B., Nguyen Quoc Son, Sur les matériaux standard généralisés, J. de Mécanique, 14, 1975, p. 39–63.MATHMathSciNetGoogle Scholar
  6. 6.
    Nguyen Quoc Son, Pnobeemes de Peasticite et de Ruptune, Cours D.E.A. Orsay, Polycopié 1982.Google Scholar
  7. 7.
    Germain, P., Couns de Mécanique dei Milieux Continua,. Masson, Paris 1974.Google Scholar
  8. 8.
    Germain, P., Nguyen Quoc Son, Suquet, P., Continuum Thermodynamics, J. App. Mech,,, 50, 1983, p. 1010–1020.CrossRefMATHGoogle Scholar
  9. 9.
    Suquet, P., Local and global aspects in the mathematical theory of Plasticity, Symposium „Peasticity Today“, Udine 1983. Ed. A. Bianchi, A. Sawczuk, To be published.Google Scholar
  10. 10.
    Ekeland, I., Temam, R., Anatyse Convese et Pnobtemes vaniationnets, Dunod, Paris 1974.Google Scholar
  11. 11.
    Moreau, J.J., Fonctionnettes convexes, Cours au Collège de France, Polycopié Paris 1966.Google Scholar
  12. 12.
    Visintin, A., A Phase transition problem with delay, Contnot and Cybennetics,11, 1982, p. 5–18.Google Scholar
  13. 13.
    Nguyen Quoc Son, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale, to be published in J. Méca. Théo. Appt.Google Scholar
  14. 14.
    Duvaut, G., Lions, J.L., Les inéquations en Mécanique et en Physique, Dunod, Paris 1972.MATHGoogle Scholar
  15. 15.
    Demengel, F., Théorèmes de trace et de densité pour des espaces fonctionnels de la mécanique non linéaire, To be published in Jounnat de Maths pounes et apptiquées.Google Scholar
  16. 16.
    Demangel, F., Relaxation et existence pour le problème des matériaux à blocage, To be published.Google Scholar
  17. 17.
    Temam, R., Pnabtèmes mathématiques en Ptasticié, Dunod 1983.Google Scholar
  18. 18.
    Strang, G., A minimax problem in Plasticity Theory, in Functionat anatysis Methods in Numecicat Anatysis, Lecture Notes in Math., no 701, 1979, p. 319–333.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1985

Authors and Affiliations

  • P. M. Suquet
    • 1
  1. 1.Mécanique des Milieux ContinusUniversité Montpellier IIFrance

Personalised recommendations