Advertisement

Integrated Photoelasticity and Its Applications

  • Hiller Aben
Part of the International Centre for Mechanical Sciences book series (CISM, volume 290)

Abstract

Main advantage of photoelasticity lies in the possibility to determine stresses also at internal points of a three-dimensional body. However, classical methods used for this purpose (the frozen stress and scattered light methods) are either labour-consuming or need complicated apparatus.

Keywords

Phase Retardation Characteristic Direction Light Vector Optical Equation Scattered Light Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Гинзбург, В.Л., Об исследовании напряжений оптическим методом, Журнал мехн. фцз., 14, 181, 1944.Google Scholar
  2. 2.
    Абен, Х., О применении метода фотоупругости для исследования выпученных пластинок, Изв. АН ЭССР, сер. мехн. ц фцз.-мам. наук, 6, 28, 1957.Google Scholar
  3. 3.
    Aben, H.K., Optical phenomena in photoelastic models by the rotation of principal axes, Exp. Mech. 6, 13, 1966.CrossRefGoogle Scholar
  4. 4.
    Aben, H., Integrated Photoelasticity, McGraw-Hill, New York, London, 1979.Google Scholar
  5. 5.
    Neumann, F.E., Die Gesetze der Doppelbrechung des Lichts in komprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern, Abh. Kön. Akad. Wiss. Berlin, 2, 3, 1843.Google Scholar
  6. 6.
    Mindlin, R.D. and Goodman, L.E., The optical equations of three-dimensional photoelasticity, J. Appl. Phys., 20, 89, 1949.ADSCrossRefMATHGoogle Scholar
  7. 7.
    Kubo, H. and Nagata, R., Considerations of propagation of light waves in photoelastic materials and crystals, Optik, 52, 37, 1978/79.Google Scholar
  8. 8.
    Mönch, E., Roengvoraphoj, S., Beitrag zur Theorie der Spannungsoptik im elastischen, statischen Bereich bei beliebig veränderlichem Spannungszustand, Ing.-Archiv, 50, 1, 1981.CrossRefGoogle Scholar
  9. 9.
    Iwashimizu, Yu., Ultrasonic wave propagation in deformed isotropic elastic materials, Intern. J. Solids and Struct., 7, 419, 1971.CrossRefMATHGoogle Scholar
  10. 10.
    Kuske, A., Einführung in die Spannungsoptiz, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1959.Google Scholar
  11. 11.
    Srinath, L.S., Scattered Light Photoelasticity, McGraw-Hill, New Delhi, 1983.Google Scholar
  12. 12.
    Brillaud, J., Lagarde, A., Methode ponctuelle de la photoélasticité tridimensionnelle, Proc. Seventh Internat. Conf. on Exp. Stress Anal., Hdifa, 329, 1982.Google Scholar
  13. 13.
    Theocaris, P.S., Gdoutos, E.E., Matrix Theory of Photoelasticity, Springer-Verlag, Berlin, Heidelberg, New York, 1979.CrossRefGoogle Scholar
  14. 14.
    Poincaré, H., Théorie mathématique de la lumière, II, Paris, 1892.Google Scholar
  15. 15.
    Robert, A., The application of Poincaré’s sphere to photoelasticity, Int. J. Solide and Struct., 6, 423, 1970.CrossRefGoogle Scholar
  16. 16.
    Mindlin, R.D., An extension of the photoelastic method of stress measurement to plates in transverse bending, J. Appt. Mech., 8, A187, 1941.Google Scholar
  17. 17.
    Favre, H., Gilg, B., Sur une méthode purement optique pour la mesure directe des moments dans les plaques minces fléchies, Schweiz. Bauzeitung, 68, 253, 265, 1950.Google Scholar
  18. 18.
    Kuske, A., Die Auswertung von ebenen spannungsoptischen Versuchen. Scheiben und Platten nach dem Zweischichtverfahren, Forsch. Ingenieurwes., 18, 113, 1952.CrossRefGoogle Scholar
  19. 19.
    Schwieger, H., Ein Auswerteverfahren bei der spannungsoptischen Untersttchung elastischer Platten, Bauplan.-Bautechn., 8, 174, 1954.Google Scholar
  20. 20.
    Goodier, J.N., Lee, G.H., An extension of the photoelastic method of stress measurement to plates in transverse bending, J. Appl. Mech., 8, 27, 1941.Google Scholar
  21. 21.
    Lerehenthal, Ch.H., Photoelastic analysis of plates by bonding polaroid foils between plastics, Bull. Res. Council of Israel, GC, 202, 1958.Google Scholar
  22. 22.
    Aben, H.K., Magnetophotoelasticity — photoelasticity in a magnetic field, Exp. Mech., 10, 97, 1970.CrossRefGoogle Scholar
  23. Aben, H.K., Idnurm, S., Stress concentration in bent plates by magnetophotoelasticity, Proc. Fifth Intern. Conf. on Exp. Stress Anal., Udine, 4.5, 1974.Google Scholar
  24. 24.
    Peterson, R.E., Stress Conentiation Factois, John Wiley and Sons, New York, London, Sydney, Toronto, 1974.Google Scholar
  25. 25.
    Spalding, I.J., High power lasers — their industrial and fusion applications, Optiec and Laser Technology, 12, 187, 1980.ADSCrossRefGoogle Scholar
  26. 26.
    Aben, H., Idnurm, S., Josepson, J., Tatarinov, A., Spannungsoptische Effekte im starken Magnetfeld, Wiss. Beiträge, Ingeniewrhochschule Zwickau, sonderheft zur Thema: III Kolloquium Eigenspannungen und Oberflächenverfestigung, 185, 1982.Google Scholar
  27. 27.
    Kuske, A., Spannungsopische Untersuchung von Schalen, Komissarverlag Hubert Hövelborn, Niederkassel-Mondorf, 1973.Google Scholar
  28. 28.
    Laermann, K.-H., Das Prinzip der integrierten Photoelastizität, angewandt auf die experimentelle Analyse von Platten mit nichtlinearen Formänderungen, Proc. Seventh Internat. Conf. on Exp. Stress Anal., Haifa, 301, 1982.Google Scholar
  29. 29.
    Read, W.T., An optical method for measuring the stress in glass bulbs, J. Appl. Phys., 21, 250, 1950.ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Preston, F.W., Synthesizing polariscopic strain patterns, J. Soc. Glass Technol., 35, 496, 1951.Google Scholar
  31. 31.
    Ritland, H.N., Stress measurement in cylindrical vessels, J. Amer. Ceram. Soc., 40, 153, 1957.CrossRefGoogle Scholar
  32. 32.
    Poritsky, H., Analysis of thermal stresses in sealed cylinders and the effect of viscous flow during anneal, Phys., 5, 406, 1934.CrossRefMATHGoogle Scholar
  33. 33.
    O’Rourke, R.C., Saenz, A.W., Quenching stresses in transparent isotropic media and the photoelastic method, Quart. Appl. Math., 8, 303, 1950.MATHMathSciNetGoogle Scholar
  34. 34.
    Бросман Э., К. опредлению температурных напряжений в цилиндрах методом интегральной фотоупругости, Изв. АН ЭССР, фцзцка, мамемамцка, 25, 418, 1976.Google Scholar
  35. 35.
    Saunders, M.J., Determination of the stress in optical fibers by means of a polariscope, Rev. Sci. Instrum., 47, 496, 1976.ADSCrossRefGoogle Scholar
  36. 36.
    Chu, P.L., Whitbread, T., Measurement of stresses in optical fiber and preform, Appl. Optics, 21, 4241, 1982.ADSCrossRefGoogle Scholar
  37. 37.
    O’Rourke, R.C., Three-dimensional photoelasticity, J. Appl. Phys., 22, 872, 1951.ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Srinath, L.S., Principal-stress differences in transverse planes of symmetry, Exp. Mech., 11, 130, 1971.CrossRefGoogle Scholar
  39. 39.
    Doyle, J.F., Danyluk, H.T., Integrated photoelasticity for axisymmetric problems, Exp. Mech., 18, 215, 1978.CrossRefGoogle Scholar
  40. 40.
    Бросман Э., Полль, В., Тяхт, К., Уточненный учет вращения квазиглав ных напряжений в цилиндрах интегральной фотоупругости кубических монокристаллов, Изв. АН ЭССР, фцзцка, мамемамцка, 32, 179, 1983.Google Scholar
  41. 41.
    Hecker, F.W., Pindera, J.T., Influence of stress gradient on direction of light propagation in photoelastic specimens, VDI-Berichte, N° 313, 745, 1978.Google Scholar
  42. 42.
    Sneddon, I.N., Fourier Transforms, McGraw-Hill, New York, 1951.Google Scholar
  43. 43.
    Khayyat, F.A., Stanley, P., The photoelastic determination of thermal stress concentrations in grooved cylinders with a radial temperature gradient, J. Strsin Anal., 14, 95, 1979.CrossRefGoogle Scholar
  44. 44.
    Инденбом, В.Л., К теории образования напряжений и дислокаций при росте кристаллов, Крцстаппографця, 9, 74, 1964.Google Scholar
  45. 45.
    Hornstra, J., Penning, P., Birefringence due to residual stress in silicon, Philips Res. Repts., 14, 237, 1959.Google Scholar
  46. 46.
    Aben, H., Brosman, E., Integrated photoelasticity of cubic single crystals, VDI-Berichte, N° 313, 45, 1978.Google Scholar
  47. 47.
    Резников, Б.А., О механизме оаразования “аномального” распределения остаточных напряжений при тепловой обработке монокристаллов, Фцзцка твербого тепа, 5, 2526, 1963.Google Scholar
  48. 48.
    Herman, G.T., Image Reconstruction from Projections, Academic Press, New York, 1980.MATHGoogle Scholar
  49. 49.
    Vest, C.M., Ural, E.A., The role of interferometry and tomography in stress analysis of transparent media, Proc. SESA Spring Meeting, Dearborn, 242, 1981.Google Scholar
  50. 50.
    Tichonov, A., Arsenine, V., Méthodes de Résolution de problèmez Mal Posés, Mir, Moscou, 1976.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Hiller Aben
    • 1
  1. 1.Institute of CyberneticsEstonian Academy of SciencesTallinnUSSR

Personalised recommendations