Advertisement

Aircraft System Identification — Determination of Flight Mechanics Parameters

  • E. Plaetschke
  • S. Weiss
Part of the International Centre for Mechanical Sciences book series (CISM, volume 296)

Abstract

Identification of aircraft stability and control derivatives from flight test data is of growing importance in the design, testing and certification of modern aircraft. The greater need for these derivatives has the following reasons:
  • They are used to improve mathematical models for ground and in-flight aircraft simulators.

  • They serve as a basis for the design of flight control systems.

  • They define a given aircraft and can be used for verification of specified flying/handling qualities.

  • They are used for correlation with analytical and wind tunnel data.

  • They help to reduce prototype testing time and costs.

Keywords

Flight Test Flight Vehicle Aircraft System Pitch Rate Zero Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamel, P.G., Aircraft parameter identification methods and their applications–Survey and future aspects-, in AGARD Lecture Series No. 104 Parameter Identification, AGARD, London, 1979, 1–1.Google Scholar
  2. 2.
    Iliff, K.W., Aircraft identification experience, in AGARD Lecture Series No. 104 Parameter Identification, AGARD, London, 1979, 6–1.Google Scholar
  3. 3.
    Jategaonkar, R.V. and Plaetschke, E., Maximum likelihood estimation of parameters in nonlinear flight mechanics systems, in IFAC Identification and System Parameter Estimation 1985, Barker, H.A. and Young, P.C., Eds., Pergamon Press, Oxford and New York, 1985, 663.Google Scholar
  4. 4.
    Plaetschke, E. and Mackie, D.B., Maximum-Likelihood-Schätzung von Parametern linearer Systeme aus Flugversuchsdaten–Ein FORTRAN-Programm, DFVLR-Mitt. 84–10, 1984.Google Scholar
  5. 5.
    Marchand, M. and Fu, K.H., Frequency domain parameter estimation of aeronautical systems without and with time delay, in IFAC Identification and System Parameter Estimation 1985, Barker, H.A. and Young, P.C., Eds., Pergamon Press, Oxford and New York, 1985, 669.Google Scholar
  6. 6.
    Plaetschke, E. and Schulz, G., Practical input signal design, in AGARD Lecture Series No. 104 Parameter Identification, AGARD, London, 1979, 3–1.Google Scholar
  7. 7.
    Koehler, R. and Wilhelm, K., Auslegung von Eingangssignalen für die Kennwertermittlung, Report IB 154–77/40, DFVLR Institut für Flugmechanik, Braunschweig, F.R. Germany, 1977.Google Scholar
  8. 8.
    Mehra, R.K., Frequency-Domain Synthesis of Optimal Inputs for Linear System Parameter Estimation, Report TR 645, Division of Engineering and Applied Physics, Harvard University, Cambridge, Mass., 1973.Google Scholar
  9. 9.
    Schulz, G., Entwurf optimaler Eingangssignale für die Systemidentifizierung unter Berücksichtigung von MeB- und Systemrauschen, Regelungstechnik, 25, 324, 1977.MATHGoogle Scholar
  10. 10.
    Mulder, J.A., Design and Evaluation of Dynamic Flight Test Manoeuvres,Delft University of Technology, Delft, The Netherlands, to be published.Google Scholar
  11. 11.
    Plaetschke, E., Mulder, J.A. and Breeman, J.H., Flight test results of five input signals for aircraft parameter identification, in IFAC Identification and System Parameter Estimation 1982, Bekey, G.A. and Saridis, G.N., Eds., Pergamon Press, Oxford and New York, 1983, 1149.Google Scholar
  12. 12.
    Plaetschke, E., Ein FORTRAN-Programm zur Maximum-Likelihood-Parameterschätzung in nichtlinearen retardierten Systemen der Flugmechanik–Benutzeranleitung, DFVLR-Mitt. 86–08, 1986.Google Scholar
  13. 13.
    Marchand, M., Bestimmung der Derivative eines Do-28-TNT-Modells aus Freiflugversuchen, DFVLR-FB 82–17, 1982.Google Scholar
  14. 14.
    Hall, W.E., Gupta, N.K. and Hansen, R.S., Rotorcraft system identification techniques for handling qualities and stability and control evaluation, in 34th Annual Forum of the American Helicopter Society,Washington, D.C., 1978, paper 78–30.Google Scholar
  15. 15.
    Koehler, R. and Wilhelm, K., Closed loop aspects of aircraft identification, in AGARD Lecture Series No. 104 Parameter Identification, AGARD, London, 1979, 10–1.Google Scholar
  16. 16.
    Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, New York, 1972, chap. 4.Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • E. Plaetschke
    • 1
  • S. Weiss
    • 1
  1. 1.Institut für FlugmechanikBraunschweig-FlughafenGermany

Personalised recommendations