Applications in Aerospace and Airplane Engineering: Estimation of Modal Quantities and Model Improvement

  • H. G. Natke
Part of the International Centre for Mechanical Sciences book series (CISM, volume 296)


Here the author reports on older experience of ground1) and flight2) vibration tests of airplanes which, however, in its statements is still valid. Today better relative pickups are available than 10 years ago, and more effective miniand μ-processors, including software, can be used for data processing. The power amplifiers of the electromagnetic exciters are much smaller and need no water-cooling any more. This is through the use of transistors instead of tubes etc. The excitation possibilities are also greater than they were 20 years ago. But when one looks at the ground vibration test, especially in France and the Federal Republic of Germany, one finds that the “official” institutions such as ONERA and DFVLR still mainly use the phase resonance technique with harmonic excitation /1/2/ as described in /3/4/. The flight vibration tests, including their quick-look application, make use of newer data processing methods, such as FFT and phase separation techniques /5/. The modal identification of satellites in free-free boundary simulation is done similarly as for airplanes. However, in satellite testing in the earth-gravity environment it is more difficult to fix exciters at those points which are necessary for the appropriate force excitation. In the clamped-free boundary condition (such as a cantilever) in which the attached part is generally excited, the special excitation has to be taken into account.


Weight Little Square Vibration Test Ground Vibration Steel Cable Experimental Modal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niebdal, N.: Advances in Ground Vibration Testing Using a Combination of Phase Resonance and Phase Separation Methods; 2nd Internat. Symposium on Aeroelasticity and Structural Dynamics, Aachen, 1985, DGLR-Bericht 85–02, 523–528Google Scholar
  2. 2.
    Dat, R. and Lubrina, P.: The Methods Implemented at ONERA to Improve Airplane Ground Vibration Tests; Proc. 4th Internat. Modal Analysis Conf., Los Angeles, CA, 1986, Vol. II, 844–849Google Scholar
  3. 3.
    Natke, H.G. and Cottin, N.: Introduction to this CourseGoogle Scholar
  4. 4.
    Natke, H.G.: Einführung in Theorie und Praxis der Zeit- reihen-und Modalanalyse; Friedr. Vieweg i Sohn, 1983CrossRefGoogle Scholar
  5. 5.
    International Symposium on Aeroelasticity, NUrn- berg, 1981, DGLR-Bericht 82–01Google Scholar
  6. 6.
    Natke, H.G.: Schwingungsversuche mit der dritten Stufe der “EUROPA” I; LRT 16 (1970) Nr. 3, 5 7–64Google Scholar
  7. 7.
    Natke, H.G.: Anwendung eines versuchsmäßig–rechnerischen Verfahrens zur Ermittlung der EigenschwingungsgröBen eines elastomechanischen Systems bei einer Erregerkonfiguration; Z. Flugwiss. 18 (1970), Heft 8, 290–303Google Scholar
  8. 8.
    Gimmestad, D.W. (Editor): An Improved Ground Vibration Test Method, Vol. I: Research Report; AFWAL-TR-80–3056, Sept. 1980. Boeing Military Airplane Comp. Seattle, Wash, and Flight Dynamics Lab. Air Force Wright Aeronautical Lab, Air Force Command, Wright-Patterson Air Force Systems Base, OhioGoogle Scholar
  9. 9.
    Strutz, K.-D., Cottin, N. und Eckhardt, K.: Anwendungen und Erfahrungen mit einem digitalen Auswerteverfahren zur Bestimmung der dynamischen Kenngrößen eines linearen elastomechanischen Systems aus Impulsantworten; Z. Flugwiss. 24 (1976), Heft 4, 209–219Google Scholar
  10. 10.
    Link, M. and Vollan, A.: Identification of Structural System Parameters from Dynamic Response Data; Z. Flugwiss. Weltraumforsch. 2 (1978), Heft 3, 165–174Google Scholar
  11. 11.
    Natke, H.G. and Cottin, N.: Updating Mathematical Models on the Basis of Vibration and Modal Test Results–A Review of Experience; 2nd Internat. Symposium on Aeroelasticity and Structural Dynamics, Aachen 1985, DGLR-Bericht 85–02, 625–631Google Scholar
  12. 12.
    Collins, J.D., Hart, G.C., Hasselman, T.K. and Kennedy, B.: Statistical Identification of Structures; AIAA Journal, Vol. 12, No. 2, 1974, 185–190CrossRefMATHGoogle Scholar
  13. 13.
    Zimmermann, H., Collmann, D. and Natke, H.G.: Erfahrungen zur Korrektur des Rechenmodells mit gemessenen Eigenfrequenzen am Beispiel des Verkehrsflugzeuges VFW 614; Z. Flugwiss. Weltraumforsch. 1 (1977), Heft 4, 278–285Google Scholar
  14. 14.
    Demchak, L. and Harcrow, H.: Analysis of Structural Dynamic Data from Skylab; Martin-Marietta-Corp., NASA CR-2727, Vol. 1, 1976Google Scholar
  15. 15.
    Cottin, N., Felgenhauer, H.-P. and Natke, H.G.: On the Parameter Identification of Elastomechanical Systems Using Input and Output Residuals; Ingenieur-Archiv 54, 1984, 378–387CrossRefMATHGoogle Scholar
  16. 16.
    Cottin, N. and Natke, H.G.: On the Parameter Identification of Elastomechanical Systems Using Weighted Input and Modal Residuals; Ingenieur-Archiv 56, 1986, 106–113CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • H. G. Natke
    • 1
  1. 1.Universität HannoverHannoverGermany

Personalised recommendations