Introduction to System Identification: Fundamentals and Survey

  • H. G. Natke
  • N. Cottin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 296)


The application of system identification to engineering problems requires certain knowledge of
  • the inherent theoretical relations

  • the test and measuring conditions (and their inevitably imperfect realization)

  • the deterministic and statistical approaches in system identification (e.g. time series analysis).


Time Series Analysis State Space Model Frequency Response Function Parameter Matrice State Space Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    Natke, H.G. (Editor); Identification of Vibrating Structures; CISM courses and lectures No. 272, Springer-Verlag, Wien, New York, 1982Google Scholar
  2. 1.2
    Bendat, J.S. and A.G. Piersol; Random-Data: Analysis and Measurement Procedures; Wiley-Interscience, New York, London, Sydney, Toronto, 1971Google Scholar
  3. 1.3
    Otnes, R.K. and L. Enochson; Applied Time Series Analysis; John Wiley and Sons, New York, 1978MATHGoogle Scholar
  4. 1.4
    Box, G.E.P. and G.M. Jenkins; Time Series Analysis Forecasting and Control; Holden-Day, San Franscisco, 1970MATHGoogle Scholar
  5. 1.5
    Natke, H.G.; Einführung in Theorie und Praxis der Zeitreihen-und Modalanalyse; Vieweg Sohn, Braunschweig, Wiesbaden, 1983CrossRefGoogle Scholar
  6. 1.6
    Ewins, D.J.; Modal Testing: Theory and Practice; John Wiley Sons, New York, 1984Google Scholar
  7. 1.7
    Harris, C.M. and C.E. Crede (Editors): Shock and Vibration Handbook, Sec. Edition; McGraw-Hill, 1976Google Scholar
  8. 1.8
    Lancaster, P.; Lambda-matrices and Vibrating Systems; Pergamon Press Oxford, London, Edinburgh, New York, Toronto, Paris, Braunschweig, 1966Google Scholar
  9. 1.9
    Veubeke Fraejis de, B.M.; A Variational Approach to Pure Mode Excitation Based on Characteristic Phase Lag Theory; AGARD Rep. 39, April 1956Google Scholar
  10. 1.10
    Meirovitch, L.; Computational Methods in Structural Dynamics; Sijthoff Nordhoff, Alphen aan den Rijn, the Netherlands, Rockville, Maryland, USA, 1980Google Scholar
  11. 1.11
    Natke, H.G.; Angenäherte Fehlerermittlung für Modalsynthese-Ergebnisse innerhalb der Systemanalyse und Systemidentifikation; ZAMM 61, 1981, 41–53Google Scholar
  12. 1.12
    Eykhoff, P.;System Identification - Parameter and State Estimation; John Wiley and Sons, London, New York, Sydney, Toronto, 1974Google Scholar
  13. 1.13
    Natke, H.G. (Hrsg.); Dynamische Probleme - Modellierung und Wirklichkeit; CRI-Rep. CRI-K 1/84, 1984Google Scholar
  14. 1.14
    Cifuentes, A.O.; System Identification of Hysteretic Structures; California Institute of Technology, EERL 84–04, Pasadena, Cal., 1984Google Scholar
  15. 1.15
    Natke, H.G. and N. Cottin; On the Input Identification of Tall Buildings without the Usual Limiting Assumptions; 3rd Internat. Conf. on Computational Methods and Experimental Measurements, Sept. 1986 in Porto Caras, Greece (Eds: G.A. Keramidas, C.A. Brebbia ), Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1986Google Scholar
  16. 1.16
    Faky, F.; Sound and Structural Vibration - Radiation, Transmission and Response; Academic Press, 1985Google Scholar
  17. 1.17
    Pierce, A.D.; Acoustics: Introduction to its Physical Principles and Applications; McGraw-Hill, 1981Google Scholar
  18. 1.
    Kress, R.; Integralgleichungsmethoden bei direkten und inversen Randwertproblemen aus der Theorie akustischer und elektromagnetischer Schwingungen; Lehr-stuhl für Numerische und Angewandte Matehamtik, Uni. GöttingenGoogle Scholar
  19. 1.19
    Sas, P. and P. Vandeponseele; Combined Use of Dynamic Analysis and Acoustic Radiation Models, a Potential Tool for the Design of Silent Mechanical Structures: Proc. of the 10th Internat. Seminar on Modal Analysis, Part II, Leuven 1985Google Scholar
  20. 1.
    Cottin, N.; Parameterschätzungen mit Hilfe des Bayesschen Ansatzes bei linearen elastomechanischen Systemen; Diss. U Hannover, 1983, CRI-F-2/1983Google Scholar
  21. 1.21
    Isenberg, J.; Processing from Least Squares to Bayesian Estimation; J.H. Wiggins Co., Redondo Beach, CA, ASME paper No. 79-WA/DSC-16, 1979Google Scholar
  22. 1.22
    Box, G.E.P. and G.C. Tiao; Bayesian Interference in Statistical Analysis; Addison-Wesley Publishing Company Reading, Massachussets; Menlo Park, California; London; Don Mills, Ontario, 1973Google Scholar
  23. 1.23
    Bard, Y.; Nonlinear Parameter Estimation; Academic Press New York and London, 1974Google Scholar
  24. 1.24
    Peterka, V.; Bayesian Approach to System Identification; in: P. Eykhoff (Editor): Trends and Progress in System Identification; Pergamon Press Oxford/New York/Toronto/Sydney/Paris/Frankfurt, 1981Google Scholar
  25. 1.25
    Balakrhishnan, A.V.; Kalman Filtering Theory; Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984Google Scholar
  26. 2.1
    Ibanez, P.; Peview of Analytical and Experimental Techniques for Improving Structural Dynamic Models; Applied Nucleonics Company Inc. Santa Monica, California, Paper No. 1149–1, January 1977Google Scholar
  27. 2.2
    Terburton, C.B.; The Dynamical Behaviour of Structures; Pergamon Press, Oxford /New York/Toronto/ Sydney/Paris/Frankfurt, 1976Google Scholar
  28. 2.3
    Tart, G.C. (Ed.); Dynamic Response of Structures: Experimentation, Observation, Prediction and Control, Proceedings of the 2nd Specialty Conference in Sheraton, Atlanta, Georgia, January 15–16, 1981Google Scholar
  29. 2.4
    Fart, G.C. and P.P. Nelson (Eds.); Dynamic Response of Structures, Proceedings of the 3rd ASCE Conference, University of California, Los Angeles, California, Earch 31 - April 2, 1986Google Scholar
  30. 2.5
    Matke, H.G. and H. Schulze; Parameter Adjustment of a Model of an Offshore Platform from estimated Ei- Fenfrequencies Data; Journal of Sound and Vibration, Vol. 77, No. 2, pp 271–285, 1981Google Scholar
  31. 2.6
    Hanks, B.R.; Dynamic Verification of very large Space Structures; Second Int. Symp. on Aeroelasticity and Structural Dynamics, DGLR-Report 85–02, PP 648–655; collected papers of the symposium, held in Aachen, April 1–3, 1985Google Scholar
  32. 2.7
    Kolb, M., W.-D. Longree, A. Westram; Untersuchungen von Eigenschwingungen der Forschungsplattform Nordsee bei natürlicher und künstlicher Anregung, VDI-Bericht Nr. 269, S. 97–106, 1976Google Scholar
  33. 2.8
    Kernbichler, K., R. Flesch, G. Rauscher; Dynamische Untersuchungen von Großbrücken (Massivbrücken), Insitu-Versuche und Rechenmodelle; in: Natke, H.G. (Herausgeber): Dynamische Probleme - Modellierung und Wirklichkeit -, Vorträge der Tagung am 4. und 5. Okt. 1984 in Hanover, Mitteilung des Curt-RischInstituts der Universität Hannover, CRI-K 1/84, Bd. II, S. 3.79–398, 1984Google Scholar
  34. 2.9
    Natke, H.G.; Beschreibung einer Schwingungsanlage und deren Einsatz für die dritte Stufe der EUROPA I; Bericht EV-B 11, Vereinigte Flugtechnische Werke GmbH, 1969Google Scholar
  35. 2.10
    Tustin, W.; A Comparison of Techniques and Equipment for Generating Vibration; The Shock and Vibra- tion Digest Vol. 9, No. 10, pp 3–10, Shock and Vibration Information Center Washington, D.C., 1977CrossRefGoogle Scholar
  36. 2.11
    Van der Auweraer, H., P. Vanherck, P. Sas, R. Snoeys; Experimental Modal Analysis with Stepped-Sine Excitation; Proceedings of the 10th International Seminar on Modal Analysis, K.U. Leuven, Belgium, 30 Sept. - 4 Oct. 1985Google Scholar
  37. 2.12
    Brown, D., G. Carbon, K. Ramsey; Survey of Excitation Techniques Applicable to the Testing of Automotive Structures; International Automotive Engineering Congress and Exposition, Detroit, Febr. 28 - March 4, 1977, SAE-Paper No. 770029, 15 pp, 1977Google Scholar
  38. 2.13
    Olsen, N.; Excitation functions for structural frequency response measurements; Proceedings of the 2nd International Modal Analysis Conference, PP 894–902, ( IMAC-II), Orlando, Febr. 1984Google Scholar
  39. 2.14
    Van Brussel, H.; Comparative assessment of harmonic, random, swept sine and shock excitation methods for the identification of machine tool structures with rotating spindles; Annuals of the CIRP, Vol. 24/1/ 1975, pp 291–296Google Scholar
  40. 2.15
    Allemang, R.J., R.W. Rost, D.L. Brown; Multiple Input Estimation of Frequency Response Functions: Excitation Considerations; ASME-Paper No. 83-DET73, 11 ppGoogle Scholar
  41. 2.16
    Halvorsen, W.G., D.L. Brown; Impulse Technique for Structural Frequency Response Testing; Sound and Vibration, November 1977, pp 8–21Google Scholar
  42. 2.17
    Strobel, H.; Experimentelle Systemanalyse, Akademie-Verlag, Berlin 1975MATHGoogle Scholar
  43. 2.18
    Broch, J.T.; Messungen von mechanischen Schwingungen und StröBen; Brüel Kjaer, Naevum, Dänemark, 1970Google Scholar
  44. 2.19
    Vanherck, P.; On the calibration of accelerometers; Proceedings of the 10th International Seminar on Modal Analysis, K.U. Leuven, Belgium, 30 Sept.-4 Oct., 1985Google Scholar
  45. 2.20
    Lally, R.W.; Trends in transducer technology; Proceedings of the 10th International Seminar on Modal Analysis, K.U. Leuven, Belgium, 30 Sept. - 4 Oct., 1985Google Scholar
  46. 2.21
    Yatke, H.G.; Application in Aerospace and Airplane Engineering; within these lecture notesGoogle Scholar
  47. 2.22
    Natke, H.G.; Transiente Anregungen von mechanischen Schwingungen in der Versuchstechnik (Transient excitations of mechanical vibrations in testing techniques); Technisches Messen tm, 52. Jahrgang, Heft 11/1985, S. 393–398, Aufsatz V 170–11Google Scholar
  48. 3.1
    Director, S.W. and R.A. Rohrer; Introduction to System Theory; McGraw Hill, New York, 1972Google Scholar
  49. 3.2
    Brogan, W.L.; Modern Control Theory; Quantum, New York, 1974Google Scholar
  50. 3.3
    Luenberger, D.G.; Introduction to Dynamic Systems, Wiley, New York, 1979MATHGoogle Scholar
  51. 3.4
    Moore, B.C.; Principal Component Analysis in Linear Systems; Controllability, Observability and Model Reduction; IEEE Trans. Autom. Control, Vol. AC-26, No. 1, 1981Google Scholar
  52. 3.5
    Shokoohi, S., L.M. Silverman and P.M. Van Dooren; Linear Time-variable Systems: Balancing and Model Reduction; IEEE Trans. Autom. Control, Vol. AC-28, No. 8, 1983Google Scholar
  53. 3.6
    Fernando, K.V. and H. Nicholson; On the Structure of Balanced and Other Principal Represenations of SISO Systems; IEEE Trans. Autom. Control, Vol. AC-28, No. 2, 1983Google Scholar
  54. 3.7
    Gawronski, W. and H.G. Natke; Balancing Linear Systems, will be published in Int. J. Systems Sci. 1987Google Scholar
  55. 3.8
    Jaquot, R.G.; Modern Digital Control Systems; Dekker, New York, 1981Google Scholar
  56. 3.9
    Luenberger, D.G.; Introduction to Dynamic Systems; Wiley, New York, 1979MATHGoogle Scholar
  57. 3.10
    Gawronski, W. and H.G. Natke; On ARMA Models for Vibrating Systems; Probabilistic Engineering Mechanics, 1986, Vol. ‘1, No. 3, 1 50–1 56Google Scholar
  58. 3.11
    Makhoul, J.; Linear Prediction: A Tutorial Review; Proc. IEEE, Vol. 63, No. 4, 1975Google Scholar
  59. 3.12
    Friedlander, B.; Lattice Filters for Adaptive Processing; Proc. IEEE, Vol. 70, No. 8, 1982Google Scholar
  60. 3.13
    Friedlander, B.; Lattice Methods for Spectral Estimation; Proc. IEEE, Vol. 70, No. 9, 1982Google Scholar
  61. 3.14
    Gawronski, W. and H.G. Natke; Lattice Filters in the Identification of Linear Systems; CRI-Report, No. CRI-B-1/85Google Scholar
  62. 3.15
    Gawronski, W. and H.G. Natke; Lattice Filters and Non-Toeplitz Systems of Equations; Proc. 13th Int. Conf. Modelling and Simulation, Lugano, 1985Google Scholar
  63. 3.16
    Prony, R.; Experimental and Analytical Work on the Laws of Dilatibility of Elastic Fluids and on the Expansive Force of Water and Alcohol Vapours of Different Temperatures; J. l’Ecole Polytechnique, Vol. 1, No. 2, 1 795Google Scholar
  64. 3.17
    Ibrahim, S.R. and Mikulcik, E.C.; A Time Domain Modal Vibration Test Technique; The Shock and Vibration Bulletin, Bulletin 43, June 1973, 21–37Google Scholar
  65. 3.18
    Ibrahim, S.R. and E.C. Mikulcik; The Experimental Determination of Vibration Parameters from Time Responses; The Shock and Vibration Bulletin, Bulletin 46, August 1976, 187–196Google Scholar
  66. 3.19
    Ibrahim, S.R. and E.C. Mikulcik; A Method for the Direct Identification of Vibration Parameters from the Free Response; The Shock and Vibration Bulletin, Bulletin 47, September 1977, 183–198Google Scholar
  67. 3.20
    Ibrahim, S.R. and R.S. Pappa; Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique; Journal of Spacecraft and Rockets (AIAA), Vol. 19, No. 5, Sept.-Oct. 1982, 459–465Google Scholar
  68. 3.21
    Jahn, K.-D.; Rechnergestützte Auswertung von Schwingungsversuchen; Diss. TU Hannover, 1978Google Scholar
  69. 3.22
    Vold, H., J. Kundrat, G.T. Rocklin and R. Russel; A Multi-Input Modal Estimation Algorithm for Minicomputers SAE paper No. 820194, 1982Google Scholar
  70. 3.23
    Juang, J.N. and R.S. Pappa; An Eigensystem Realization Algorithm (ERA) for Modal Parameter Identification; Workshop on Identification and Control of Flexible Space Structures; Pasadena, CA, June 1984Google Scholar
  71. 3.24
    Gawronski, W. and H.G. Natke; On Realizations of the Transfer Function Matrix; will be published in Internat. J. of Systems Science 1987Google Scholar
  72. 3.25
    Kozin, F. and H.G. Natke; System Identification Techniques; in Structural Safety, 3 (1986) 269–31CrossRefGoogle Scholar
  73. 3.26
    Natke, R.G.; Anwendung eines versuchsmäßig–rechnerischen Verfahrens zur Ermittlung der EigenschwingungsgröBen eines elastomechanischen Systems bei einer Erregerkonfiguration; Z. Flugwiss. 18 (1970), Heft 8, 290–303Google Scholar
  74. 3.27
    Natke, H.G.; Ein Verfahren zur rechnerischen Ermittlung der EigenschwingungsgröBen aus den Ergebnissen eines Schwingungsversuches in einer Erregerkonfiguration; Diss. TH München, 1968; English Translation: NASA-TT-F-12446, 1969Google Scholar
  75. 3.28
    Natke, H.G.; Die Berechnung der EigenschwingungsgröBen eines gedämpften Systems aus den Ergebnissen eines Schwingungsversuches in einer Erregerkonfiguration; Jahrbuch 1971 der DGLR, 98–120Google Scholar
  76. 3.29
    Stahle, C.V. and W.R. Forlifer; Ground Vibration Testing of Complex Structures; AIA - AFOSR Flight Flutter Testing Symposium, Washington, D.C., May 1958Google Scholar
  77. 3.30
    Stahle, C.V.; Phase Separation Technique for Ground Vibration Testing; Aerospace Engineering, July 1962Google Scholar
  78. 3.31
    Klosterman, A.L.; On the Experimental Determination and Use of Modal Representations of Dynamic Characteristics; Ph.D. Diss., U. of Cincinnati, 1971Google Scholar
  79. 3.32
    Klosterman, A.L.; Dynamic Design Analysis via Building Block Approach; Shock and Vibration Bulletin, No. 42, Part 1, June 1972Google Scholar
  80. 3.33
    Wittmeyer, H.; Parameteridentifikation bei Strukturen mit benachbarten Eigenfrequenzen speziell bei Flugschwingungsversuchen; Z. Flugwiss. Weltraumforsch. 6, 1982, Heft 2, 80–90Google Scholar
  81. 3.34
    Cottin, N., H.-P. Felgenhauer and H.G. Natke; On the Parameter Identification of Elastomechanical Systems Using Input and Output Residuals; Ingenieur-Archiv 54, 1984, 378–387MATHGoogle Scholar
  82. 3.35
    Cottin, N. and H.G. Natke: On the Parameter Identification of Elastomechanical Shstems Using Weighted Input and Modal Residuals; Ingenieur-Archiv 56, 1986, 106–113MATHGoogle Scholar
  83. 3.36
    Natke, H.G.; Die Korrektur des Rechenmodells eines elastomechanischen Systems mittels gemessener erzwungener Schwingungen; Ingenieur-Archiv 46 (1977) 168–184Google Scholar
  84. 3.37
    Natke, H.G.; Deliberations on the Improvement of the Computational Model with Measured Eigenmagnitudes; Rev. Roum. Sci. Techn.-Me. Appl. Tome 28, No. 2, Bucarest 1983, 159–173Google Scholar
  85. 3.38
    Natke, H.G., D. Collmann and H. Zimmermann; Beitrag zur Korrektur des Rechenmodells eines elastomechanischen Systems anhand von Versuchsergebnissen; VDI-Berichte No. 221, 1974, 23–32Google Scholar
  86. 3.39
    Zimmermann, H., D. Collmann and H.G. Natke; Erfahrungen zur Korrektur des Rechenmodells mit gemessenen Eigenschwingungen am Beispiel des Verkehrsflug-zeuges VFW 614; Z. Flugwiss. Weltraumforsch. 1, 1977, Heft 4, 278–285Google Scholar
  87. 3.40
    Link, M.; Theory of a Method for Identifying InTest Data; Z. Flugwiss. Weltraumforsch. 9 (1985), Heft 2, 76–82Google Scholar
  88. 3.41
    Baruch, M.; Methods of Reference Basis for Identification of Linear Dynamic Structures; AIAA Journal 22, No. 4, 1984Google Scholar
  89. 3.42
    Caesar, B.; Update and Identification of Dynamic Mathematical Models; Proc. of the 4th Internat. Modal Analysis Conf., Los Angeles, CA, 1986, 394401Google Scholar
  90. 3.43
    Natke, H.G.; Minimaländerungen an Teilsystemen aufgrund von dynamischen Anforderungen; will be published in Ingenieur-Archiv 57 (1987)Google Scholar
  91. 3.44
    Natke, H.G.; Improvement of Analytical Models with Input/Output Measurements contra Experimental Modal Analysis; Proc. 4th Internat. Modal Analysis Conf., Los Angeles, CA, 1986, 409–413Google Scholar
  92. 3.45
    Natke, H.G. and D. Rotert; Determination of Normal Modes from Identified Complex Modes; Z. Flugwiss. Weltraumforsch. 9. 1985, Heft 2, 82–88Google Scholar
  93. 3.46
    Öry, H., H. Glaser and D. Holzdeppe; Quality of Modal Data Analysis and Reconstruction of Forcing Functions Based on Measured Output Data; Proceedings of the 4th Intern. Modal Analysis Conf., Los Angeles, CA, 1986, 850–857Google Scholar
  94. 3.47
    Desanghere, D. and R. Snoeys; Indirect Identification of Excitation Forces; Proceedings of the 10th International Seminar on Modal Analysis, Part IV, Leuven, 1985Google Scholar
  95. 3.48
    Tomlinson, G.R.; Detection, Identification and Quantification of Nonlinearity in Modal Analysis A Review; Proceedings of the 4th Intern. Modal Analysis Conf., Los Angeles, CA, 1986, 837–843Google Scholar
  96. 3.49
    Mertens, M. et al.; Basic Rules of a Reliable Detection Method for Non-linear Dynamic Behaviour; Proceedings of the 10th Intern. Seminar on Modal Analysis, Part IV, Leuven, 1985Google Scholar
  97. 3.50
    Simon, M. and G.R. Tomlinson; Use of the Hilbert Transform in Modal Analysis of Linear and Non-linear Structures; Journal of Sound and Vibration (1984) 96 (4), 421–436MATHMathSciNetGoogle Scholar
  98. 3.51
    Natke, H.G. and W. Gawronski; On Structure Identification within Nonlinear Structural Systems; Rep. CRI-B-2/1984 Curt-Risch-Institut, U Hannover, 1984Google Scholar
  99. 3.52
    Rajbman, N.S. and V.M. Cadeev; Identifikation - Modellierung industrieller Prozesse; VEB-Vortrag Technik, Berlin 1980Google Scholar
  100. 3.53
    Billings, S.A.; Identification of Nonlinear Systems, a Survey; IEE Proc. Vol 127, Pt. D, Nr. 6, Nov. 1980, 272–285MathSciNetGoogle Scholar
  101. 3.54
    Natke, H.G. and J.T.P. Yao; Research Topics in Structural Identification; Proc. 3rd Conf. on Dynamic Response of Structures, EM Div./ASCE, Univ. of California, L.A., April 1986, 542–550Google Scholar
  102. 3.55
    Dat, R.; L’essai de Vibration d’une Structure Imperfaitement lineaire; La Rech. Aerospatiale 1975, No. 4, 223–227Google Scholar
  103. 3.56
    Merritt, P.H.; A Method of System Identification with an Experimental Investigation; Shock and Vibration Bulletin 47, 1977, No. 4, 175–181Google Scholar
  104. 3.57
    Natke, H.G.; Fehlerbetrachtungen zur parametrischen Identifikation eines Systems mit kubischem Steifigkeits-und Dämpfungsterm; Czerwenka-Festschrift 1979, TU MünchenGoogle Scholar
  105. 3.58
    Natke, H.G.; Addendum 1 and 2 to CRI-Report CRI-B-2/1984, Curt-Risch-Institut, U. Hannover, CRI 2.1, 2.2/1984Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • H. G. Natke
    • 1
  • N. Cottin
    • 1
  1. 1.Universität HannoverHannoverGermany

Personalised recommendations