Skip to main content

Introduction to System Identification: Fundamentals and Survey

  • Chapter
Application of System Identification in Engineering

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 296))

  • 289 Accesses

Abstract

The application of system identification to engineering problems requires certain knowledge of

  • the inherent theoretical relations

  • the test and measuring conditions (and their inevitably imperfect realization)

  • the deterministic and statistical approaches in system identification (e.g. time series analysis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Natke, H.G. (Editor); Identification of Vibrating Structures; CISM courses and lectures No. 272, Springer-Verlag, Wien, New York, 1982

    Google Scholar 

  2. Bendat, J.S. and A.G. Piersol; Random-Data: Analysis and Measurement Procedures; Wiley-Interscience, New York, London, Sydney, Toronto, 1971

    Google Scholar 

  3. Otnes, R.K. and L. Enochson; Applied Time Series Analysis; John Wiley and Sons, New York, 1978

    MATH  Google Scholar 

  4. Box, G.E.P. and G.M. Jenkins; Time Series Analysis Forecasting and Control; Holden-Day, San Franscisco, 1970

    MATH  Google Scholar 

  5. Natke, H.G.; Einführung in Theorie und Praxis der Zeitreihen-und Modalanalyse; Vieweg Sohn, Braunschweig, Wiesbaden, 1983

    Book  Google Scholar 

  6. Ewins, D.J.; Modal Testing: Theory and Practice; John Wiley Sons, New York, 1984

    Google Scholar 

  7. Harris, C.M. and C.E. Crede (Editors): Shock and Vibration Handbook, Sec. Edition; McGraw-Hill, 1976

    Google Scholar 

  8. Lancaster, P.; Lambda-matrices and Vibrating Systems; Pergamon Press Oxford, London, Edinburgh, New York, Toronto, Paris, Braunschweig, 1966

    Google Scholar 

  9. Veubeke Fraejis de, B.M.; A Variational Approach to Pure Mode Excitation Based on Characteristic Phase Lag Theory; AGARD Rep. 39, April 1956

    Google Scholar 

  10. Meirovitch, L.; Computational Methods in Structural Dynamics; Sijthoff Nordhoff, Alphen aan den Rijn, the Netherlands, Rockville, Maryland, USA, 1980

    Google Scholar 

  11. Natke, H.G.; Angenäherte Fehlerermittlung für Modalsynthese-Ergebnisse innerhalb der Systemanalyse und Systemidentifikation; ZAMM 61, 1981, 41–53

    Google Scholar 

  12. Eykhoff, P.;System Identification - Parameter and State Estimation; John Wiley and Sons, London, New York, Sydney, Toronto, 1974

    Google Scholar 

  13. Natke, H.G. (Hrsg.); Dynamische Probleme - Modellierung und Wirklichkeit; CRI-Rep. CRI-K 1/84, 1984

    Google Scholar 

  14. Cifuentes, A.O.; System Identification of Hysteretic Structures; California Institute of Technology, EERL 84–04, Pasadena, Cal., 1984

    Google Scholar 

  15. Natke, H.G. and N. Cottin; On the Input Identification of Tall Buildings without the Usual Limiting Assumptions; 3rd Internat. Conf. on Computational Methods and Experimental Measurements, Sept. 1986 in Porto Caras, Greece (Eds: G.A. Keramidas, C.A. Brebbia ), Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1986

    Google Scholar 

  16. Faky, F.; Sound and Structural Vibration - Radiation, Transmission and Response; Academic Press, 1985

    Google Scholar 

  17. Pierce, A.D.; Acoustics: Introduction to its Physical Principles and Applications; McGraw-Hill, 1981

    Google Scholar 

  18. Kress, R.; Integralgleichungsmethoden bei direkten und inversen Randwertproblemen aus der Theorie akustischer und elektromagnetischer Schwingungen; Lehr-stuhl für Numerische und Angewandte Matehamtik, Uni. Göttingen

    Google Scholar 

  19. Sas, P. and P. Vandeponseele; Combined Use of Dynamic Analysis and Acoustic Radiation Models, a Potential Tool for the Design of Silent Mechanical Structures: Proc. of the 10th Internat. Seminar on Modal Analysis, Part II, Leuven 1985

    Google Scholar 

  20. Cottin, N.; Parameterschätzungen mit Hilfe des Bayesschen Ansatzes bei linearen elastomechanischen Systemen; Diss. U Hannover, 1983, CRI-F-2/1983

    Google Scholar 

  21. Isenberg, J.; Processing from Least Squares to Bayesian Estimation; J.H. Wiggins Co., Redondo Beach, CA, ASME paper No. 79-WA/DSC-16, 1979

    Google Scholar 

  22. Box, G.E.P. and G.C. Tiao; Bayesian Interference in Statistical Analysis; Addison-Wesley Publishing Company Reading, Massachussets; Menlo Park, California; London; Don Mills, Ontario, 1973

    Google Scholar 

  23. Bard, Y.; Nonlinear Parameter Estimation; Academic Press New York and London, 1974

    Google Scholar 

  24. Peterka, V.; Bayesian Approach to System Identification; in: P. Eykhoff (Editor): Trends and Progress in System Identification; Pergamon Press Oxford/New York/Toronto/Sydney/Paris/Frankfurt, 1981

    Google Scholar 

  25. Balakrhishnan, A.V.; Kalman Filtering Theory; Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984

    Google Scholar 

  26. Ibanez, P.; Peview of Analytical and Experimental Techniques for Improving Structural Dynamic Models; Applied Nucleonics Company Inc. Santa Monica, California, Paper No. 1149–1, January 1977

    Google Scholar 

  27. Terburton, C.B.; The Dynamical Behaviour of Structures; Pergamon Press, Oxford /New York/Toronto/ Sydney/Paris/Frankfurt, 1976

    Google Scholar 

  28. Tart, G.C. (Ed.); Dynamic Response of Structures: Experimentation, Observation, Prediction and Control, Proceedings of the 2nd Specialty Conference in Sheraton, Atlanta, Georgia, January 15–16, 1981

    Google Scholar 

  29. Fart, G.C. and P.P. Nelson (Eds.); Dynamic Response of Structures, Proceedings of the 3rd ASCE Conference, University of California, Los Angeles, California, Earch 31 - April 2, 1986

    Google Scholar 

  30. Matke, H.G. and H. Schulze; Parameter Adjustment of a Model of an Offshore Platform from estimated Ei- Fenfrequencies Data; Journal of Sound and Vibration, Vol. 77, No. 2, pp 271–285, 1981

    Google Scholar 

  31. Hanks, B.R.; Dynamic Verification of very large Space Structures; Second Int. Symp. on Aeroelasticity and Structural Dynamics, DGLR-Report 85–02, PP 648–655; collected papers of the symposium, held in Aachen, April 1–3, 1985

    Google Scholar 

  32. Kolb, M., W.-D. Longree, A. Westram; Untersuchungen von Eigenschwingungen der Forschungsplattform Nordsee bei natürlicher und künstlicher Anregung, VDI-Bericht Nr. 269, S. 97–106, 1976

    Google Scholar 

  33. Kernbichler, K., R. Flesch, G. Rauscher; Dynamische Untersuchungen von Großbrücken (Massivbrücken), Insitu-Versuche und Rechenmodelle; in: Natke, H.G. (Herausgeber): Dynamische Probleme - Modellierung und Wirklichkeit -, Vorträge der Tagung am 4. und 5. Okt. 1984 in Hanover, Mitteilung des Curt-RischInstituts der Universität Hannover, CRI-K 1/84, Bd. II, S. 3.79–398, 1984

    Google Scholar 

  34. Natke, H.G.; Beschreibung einer Schwingungsanlage und deren Einsatz für die dritte Stufe der EUROPA I; Bericht EV-B 11, Vereinigte Flugtechnische Werke GmbH, 1969

    Google Scholar 

  35. Tustin, W.; A Comparison of Techniques and Equipment for Generating Vibration; The Shock and Vibra- tion Digest Vol. 9, No. 10, pp 3–10, Shock and Vibration Information Center Washington, D.C., 1977

    Article  Google Scholar 

  36. Van der Auweraer, H., P. Vanherck, P. Sas, R. Snoeys; Experimental Modal Analysis with Stepped-Sine Excitation; Proceedings of the 10th International Seminar on Modal Analysis, K.U. Leuven, Belgium, 30 Sept. - 4 Oct. 1985

    Google Scholar 

  37. Brown, D., G. Carbon, K. Ramsey; Survey of Excitation Techniques Applicable to the Testing of Automotive Structures; International Automotive Engineering Congress and Exposition, Detroit, Febr. 28 - March 4, 1977, SAE-Paper No. 770029, 15 pp, 1977

    Google Scholar 

  38. Olsen, N.; Excitation functions for structural frequency response measurements; Proceedings of the 2nd International Modal Analysis Conference, PP 894–902, ( IMAC-II), Orlando, Febr. 1984

    Google Scholar 

  39. Van Brussel, H.; Comparative assessment of harmonic, random, swept sine and shock excitation methods for the identification of machine tool structures with rotating spindles; Annuals of the CIRP, Vol. 24/1/ 1975, pp 291–296

    Google Scholar 

  40. Allemang, R.J., R.W. Rost, D.L. Brown; Multiple Input Estimation of Frequency Response Functions: Excitation Considerations; ASME-Paper No. 83-DET73, 11 pp

    Google Scholar 

  41. Halvorsen, W.G., D.L. Brown; Impulse Technique for Structural Frequency Response Testing; Sound and Vibration, November 1977, pp 8–21

    Google Scholar 

  42. Strobel, H.; Experimentelle Systemanalyse, Akademie-Verlag, Berlin 1975

    MATH  Google Scholar 

  43. Broch, J.T.; Messungen von mechanischen Schwingungen und StröBen; Brüel Kjaer, Naevum, Dänemark, 1970

    Google Scholar 

  44. Vanherck, P.; On the calibration of accelerometers; Proceedings of the 10th International Seminar on Modal Analysis, K.U. Leuven, Belgium, 30 Sept.-4 Oct., 1985

    Google Scholar 

  45. Lally, R.W.; Trends in transducer technology; Proceedings of the 10th International Seminar on Modal Analysis, K.U. Leuven, Belgium, 30 Sept. - 4 Oct., 1985

    Google Scholar 

  46. Yatke, H.G.; Application in Aerospace and Airplane Engineering; within these lecture notes

    Google Scholar 

  47. Natke, H.G.; Transiente Anregungen von mechanischen Schwingungen in der Versuchstechnik (Transient excitations of mechanical vibrations in testing techniques); Technisches Messen tm, 52. Jahrgang, Heft 11/1985, S. 393–398, Aufsatz V 170–11

    Google Scholar 

  48. Director, S.W. and R.A. Rohrer; Introduction to System Theory; McGraw Hill, New York, 1972

    Google Scholar 

  49. Brogan, W.L.; Modern Control Theory; Quantum, New York, 1974

    Google Scholar 

  50. Luenberger, D.G.; Introduction to Dynamic Systems, Wiley, New York, 1979

    MATH  Google Scholar 

  51. Moore, B.C.; Principal Component Analysis in Linear Systems; Controllability, Observability and Model Reduction; IEEE Trans. Autom. Control, Vol. AC-26, No. 1, 1981

    Google Scholar 

  52. Shokoohi, S., L.M. Silverman and P.M. Van Dooren; Linear Time-variable Systems: Balancing and Model Reduction; IEEE Trans. Autom. Control, Vol. AC-28, No. 8, 1983

    Google Scholar 

  53. Fernando, K.V. and H. Nicholson; On the Structure of Balanced and Other Principal Represenations of SISO Systems; IEEE Trans. Autom. Control, Vol. AC-28, No. 2, 1983

    Google Scholar 

  54. Gawronski, W. and H.G. Natke; Balancing Linear Systems, will be published in Int. J. Systems Sci. 1987

    Google Scholar 

  55. Jaquot, R.G.; Modern Digital Control Systems; Dekker, New York, 1981

    Google Scholar 

  56. Luenberger, D.G.; Introduction to Dynamic Systems; Wiley, New York, 1979

    MATH  Google Scholar 

  57. Gawronski, W. and H.G. Natke; On ARMA Models for Vibrating Systems; Probabilistic Engineering Mechanics, 1986, Vol. ‘1, No. 3, 1 50–1 56

    Google Scholar 

  58. Makhoul, J.; Linear Prediction: A Tutorial Review; Proc. IEEE, Vol. 63, No. 4, 1975

    Google Scholar 

  59. Friedlander, B.; Lattice Filters for Adaptive Processing; Proc. IEEE, Vol. 70, No. 8, 1982

    Google Scholar 

  60. Friedlander, B.; Lattice Methods for Spectral Estimation; Proc. IEEE, Vol. 70, No. 9, 1982

    Google Scholar 

  61. Gawronski, W. and H.G. Natke; Lattice Filters in the Identification of Linear Systems; CRI-Report, No. CRI-B-1/85

    Google Scholar 

  62. Gawronski, W. and H.G. Natke; Lattice Filters and Non-Toeplitz Systems of Equations; Proc. 13th Int. Conf. Modelling and Simulation, Lugano, 1985

    Google Scholar 

  63. Prony, R.; Experimental and Analytical Work on the Laws of Dilatibility of Elastic Fluids and on the Expansive Force of Water and Alcohol Vapours of Different Temperatures; J. l’Ecole Polytechnique, Vol. 1, No. 2, 1 795

    Google Scholar 

  64. Ibrahim, S.R. and Mikulcik, E.C.; A Time Domain Modal Vibration Test Technique; The Shock and Vibration Bulletin, Bulletin 43, June 1973, 21–37

    Google Scholar 

  65. Ibrahim, S.R. and E.C. Mikulcik; The Experimental Determination of Vibration Parameters from Time Responses; The Shock and Vibration Bulletin, Bulletin 46, August 1976, 187–196

    Google Scholar 

  66. Ibrahim, S.R. and E.C. Mikulcik; A Method for the Direct Identification of Vibration Parameters from the Free Response; The Shock and Vibration Bulletin, Bulletin 47, September 1977, 183–198

    Google Scholar 

  67. Ibrahim, S.R. and R.S. Pappa; Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique; Journal of Spacecraft and Rockets (AIAA), Vol. 19, No. 5, Sept.-Oct. 1982, 459–465

    Google Scholar 

  68. Jahn, K.-D.; Rechnergestützte Auswertung von Schwingungsversuchen; Diss. TU Hannover, 1978

    Google Scholar 

  69. Vold, H., J. Kundrat, G.T. Rocklin and R. Russel; A Multi-Input Modal Estimation Algorithm for Minicomputers SAE paper No. 820194, 1982

    Google Scholar 

  70. Juang, J.N. and R.S. Pappa; An Eigensystem Realization Algorithm (ERA) for Modal Parameter Identification; Workshop on Identification and Control of Flexible Space Structures; Pasadena, CA, June 1984

    Google Scholar 

  71. Gawronski, W. and H.G. Natke; On Realizations of the Transfer Function Matrix; will be published in Internat. J. of Systems Science 1987

    Google Scholar 

  72. Kozin, F. and H.G. Natke; System Identification Techniques; in Structural Safety, 3 (1986) 269–31

    Article  Google Scholar 

  73. Natke, R.G.; Anwendung eines versuchsmäßig–rechnerischen Verfahrens zur Ermittlung der EigenschwingungsgröBen eines elastomechanischen Systems bei einer Erregerkonfiguration; Z. Flugwiss. 18 (1970), Heft 8, 290–303

    Google Scholar 

  74. Natke, H.G.; Ein Verfahren zur rechnerischen Ermittlung der EigenschwingungsgröBen aus den Ergebnissen eines Schwingungsversuches in einer Erregerkonfiguration; Diss. TH München, 1968; English Translation: NASA-TT-F-12446, 1969

    Google Scholar 

  75. Natke, H.G.; Die Berechnung der EigenschwingungsgröBen eines gedämpften Systems aus den Ergebnissen eines Schwingungsversuches in einer Erregerkonfiguration; Jahrbuch 1971 der DGLR, 98–120

    Google Scholar 

  76. Stahle, C.V. and W.R. Forlifer; Ground Vibration Testing of Complex Structures; AIA - AFOSR Flight Flutter Testing Symposium, Washington, D.C., May 1958

    Google Scholar 

  77. Stahle, C.V.; Phase Separation Technique for Ground Vibration Testing; Aerospace Engineering, July 1962

    Google Scholar 

  78. Klosterman, A.L.; On the Experimental Determination and Use of Modal Representations of Dynamic Characteristics; Ph.D. Diss., U. of Cincinnati, 1971

    Google Scholar 

  79. Klosterman, A.L.; Dynamic Design Analysis via Building Block Approach; Shock and Vibration Bulletin, No. 42, Part 1, June 1972

    Google Scholar 

  80. Wittmeyer, H.; Parameteridentifikation bei Strukturen mit benachbarten Eigenfrequenzen speziell bei Flugschwingungsversuchen; Z. Flugwiss. Weltraumforsch. 6, 1982, Heft 2, 80–90

    Google Scholar 

  81. Cottin, N., H.-P. Felgenhauer and H.G. Natke; On the Parameter Identification of Elastomechanical Systems Using Input and Output Residuals; Ingenieur-Archiv 54, 1984, 378–387

    MATH  Google Scholar 

  82. Cottin, N. and H.G. Natke: On the Parameter Identification of Elastomechanical Shstems Using Weighted Input and Modal Residuals; Ingenieur-Archiv 56, 1986, 106–113

    MATH  Google Scholar 

  83. Natke, H.G.; Die Korrektur des Rechenmodells eines elastomechanischen Systems mittels gemessener erzwungener Schwingungen; Ingenieur-Archiv 46 (1977) 168–184

    Google Scholar 

  84. Natke, H.G.; Deliberations on the Improvement of the Computational Model with Measured Eigenmagnitudes; Rev. Roum. Sci. Techn.-Me. Appl. Tome 28, No. 2, Bucarest 1983, 159–173

    Google Scholar 

  85. Natke, H.G., D. Collmann and H. Zimmermann; Beitrag zur Korrektur des Rechenmodells eines elastomechanischen Systems anhand von Versuchsergebnissen; VDI-Berichte No. 221, 1974, 23–32

    Google Scholar 

  86. Zimmermann, H., D. Collmann and H.G. Natke; Erfahrungen zur Korrektur des Rechenmodells mit gemessenen Eigenschwingungen am Beispiel des Verkehrsflug-zeuges VFW 614; Z. Flugwiss. Weltraumforsch. 1, 1977, Heft 4, 278–285

    Google Scholar 

  87. Link, M.; Theory of a Method for Identifying InTest Data; Z. Flugwiss. Weltraumforsch. 9 (1985), Heft 2, 76–82

    Google Scholar 

  88. Baruch, M.; Methods of Reference Basis for Identification of Linear Dynamic Structures; AIAA Journal 22, No. 4, 1984

    Google Scholar 

  89. Caesar, B.; Update and Identification of Dynamic Mathematical Models; Proc. of the 4th Internat. Modal Analysis Conf., Los Angeles, CA, 1986, 394401

    Google Scholar 

  90. Natke, H.G.; Minimaländerungen an Teilsystemen aufgrund von dynamischen Anforderungen; will be published in Ingenieur-Archiv 57 (1987)

    Google Scholar 

  91. Natke, H.G.; Improvement of Analytical Models with Input/Output Measurements contra Experimental Modal Analysis; Proc. 4th Internat. Modal Analysis Conf., Los Angeles, CA, 1986, 409–413

    Google Scholar 

  92. Natke, H.G. and D. Rotert; Determination of Normal Modes from Identified Complex Modes; Z. Flugwiss. Weltraumforsch. 9. 1985, Heft 2, 82–88

    Google Scholar 

  93. Öry, H., H. Glaser and D. Holzdeppe; Quality of Modal Data Analysis and Reconstruction of Forcing Functions Based on Measured Output Data; Proceedings of the 4th Intern. Modal Analysis Conf., Los Angeles, CA, 1986, 850–857

    Google Scholar 

  94. Desanghere, D. and R. Snoeys; Indirect Identification of Excitation Forces; Proceedings of the 10th International Seminar on Modal Analysis, Part IV, Leuven, 1985

    Google Scholar 

  95. Tomlinson, G.R.; Detection, Identification and Quantification of Nonlinearity in Modal Analysis A Review; Proceedings of the 4th Intern. Modal Analysis Conf., Los Angeles, CA, 1986, 837–843

    Google Scholar 

  96. Mertens, M. et al.; Basic Rules of a Reliable Detection Method for Non-linear Dynamic Behaviour; Proceedings of the 10th Intern. Seminar on Modal Analysis, Part IV, Leuven, 1985

    Google Scholar 

  97. Simon, M. and G.R. Tomlinson; Use of the Hilbert Transform in Modal Analysis of Linear and Non-linear Structures; Journal of Sound and Vibration (1984) 96 (4), 421–436

    MATH  MathSciNet  Google Scholar 

  98. Natke, H.G. and W. Gawronski; On Structure Identification within Nonlinear Structural Systems; Rep. CRI-B-2/1984 Curt-Risch-Institut, U Hannover, 1984

    Google Scholar 

  99. Rajbman, N.S. and V.M. Cadeev; Identifikation - Modellierung industrieller Prozesse; VEB-Vortrag Technik, Berlin 1980

    Google Scholar 

  100. Billings, S.A.; Identification of Nonlinear Systems, a Survey; IEE Proc. Vol 127, Pt. D, Nr. 6, Nov. 1980, 272–285

    MathSciNet  Google Scholar 

  101. Natke, H.G. and J.T.P. Yao; Research Topics in Structural Identification; Proc. 3rd Conf. on Dynamic Response of Structures, EM Div./ASCE, Univ. of California, L.A., April 1986, 542–550

    Google Scholar 

  102. Dat, R.; L’essai de Vibration d’une Structure Imperfaitement lineaire; La Rech. Aerospatiale 1975, No. 4, 223–227

    Google Scholar 

  103. Merritt, P.H.; A Method of System Identification with an Experimental Investigation; Shock and Vibration Bulletin 47, 1977, No. 4, 175–181

    Google Scholar 

  104. Natke, H.G.; Fehlerbetrachtungen zur parametrischen Identifikation eines Systems mit kubischem Steifigkeits-und Dämpfungsterm; Czerwenka-Festschrift 1979, TU München

    Google Scholar 

  105. Natke, H.G.; Addendum 1 and 2 to CRI-Report CRI-B-2/1984, Curt-Risch-Institut, U. Hannover, CRI 2.1, 2.2/1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Wien

About this chapter

Cite this chapter

Natke, H.G., Cottin, N. (1988). Introduction to System Identification: Fundamentals and Survey. In: Natke, H.G. (eds) Application of System Identification in Engineering. International Centre for Mechanical Sciences, vol 296. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2628-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2628-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82052-0

  • Online ISBN: 978-3-7091-2628-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics