Skip to main content

Continuum Mechanics, Nonlinear Finite Element Techniques and Computational Stability

  • Chapter
Progress in Computational Analysis of Inelastic Structures

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 321))

Abstract

This three lectures course will give a modern concept of finite-element- analysis in nonlinear solid mechanics using material (Lagrangian) and spatial (Eulerian) coordinates. Elastic response of solids is treated as an essential example for the geometrically and material nonlinear behavior. Furthermore a brief introduction in stability analysis and the associated numerical algorithms will be given.

A main feature of these lectures is the derivation of consistent linearizations of the weak form of equilibrium within the same order of magnitude, taking also into account the material laws in order to get Newton-type iterative algorithms with quadratic convergence.

The lectures are intended to introduce into effective discretizations and algorithms based on a well founded mechanical and mathematical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot, J. P. (1978): An Efficient Algorithm for the Determination of certain Bifurcation Points, J. Comp. Appl. Math., 4, 19–27.

    Article  Google Scholar 

  • Batoz, I.L., Dhatt, G. (1979): Incremental Displacement Algorithms for Non-linear Problems, Int. J. Num. Meth. Engng., 14, 1262–1267.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T.; Tsay, C. S. (1983): A Stabilization Procedure for the Quadrilateral Plate Element with One–Point Quadrature. Int. J. Num. Meth. Engng., 19, 405–419.

    Article  MATH  Google Scholar 

  • Bergan, P. G., Horrigmoe, G., Krakeland, B., Soreide, T. H. (1978): Solution Techniques for Non-linear Finite Element Problems, Int. J. Num. Meth. Engng., 12, 1677–1696.

    Article  MATH  Google Scholar 

  • Brendel, B., Ramm, E. (1982): Nichtlineare Stabilitätsuntersuchungen mit der Methode der Finiten Elemente, Ing. Archiv 51, 337–362.

    MATH  Google Scholar 

  • Bushnell, D., (1985): Computerized Buckling Analysis of Shells, Mechanics of Elastic Stability, Vol. 9, Martinus Nijhoff Publishers, Boston.

    Book  Google Scholar 

  • Ciarlet, P.G. (1988): Mathematical Elasticity, Volume I, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Crisfield, M. A. (1981): A Fast Incremental/Iterative Solution Procedure that Handles Snap Through, Computers and Structures, 13, 55–62.

    Article  MATH  Google Scholar 

  • Decker, D. W., Keller, H.B. (1980): Solution Branching — A Constructive Technique, in P.J. Holmes, ed., New Approaches to Nonlinear Problems in Dynamics ( SIAM, Philadelphia ) 53–69.

    Google Scholar 

  • Dennis J.E., Schnabel R.B., (1983): Numerical Methods for Unconstrained Optimiza- tion and Nonlinear Equations, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Doyle, T.C., Ericksen, J.L., (1956): Nonlinear Elasticity, in Advances in Appl. Mech. I V, Academic Press, New York.

    Google Scholar 

  • Felippa, C. A. (1987): Traversing Critical Points with Penalty Springs, in: Transient/Dynamic Analysis and Constitutive Laws for Engineering Materials, ed. Pande, Middleton (Nijhoff, Dordrecht, Boston, Lancaster), C2/1–C2/8.

    Google Scholar 

  • Flory, P.J., (1961): Thermodynamic Relations for High Elastic Materials, Trans. Faraday Soc., 57, 829–838.

    Article  MathSciNet  Google Scholar 

  • Gruttmann, F.; Stein, E. (1987): Tangentiale Steifigkeitsmatrizen bei Anwendung von Projektionsverfahren in der Elastoplastizitätstheorie. Ing. Archiv, 58, 1524.

    Google Scholar 

  • Hallquist, J. (1979): NIKE2D: An Implicit, Finite Deformation, Finite Element Code for Analysing the Static and Dynamic Response of Two—Dimensional Solids, University of California, LLNL, Rep. UCRL-52678.

    Google Scholar 

  • Hill, R. (1958): A General Theory of Uniqueness and Stability in Elastic—Plastic Solids, J. Mech. Phys. Solids, 6, 236–249.

    Article  MATH  Google Scholar 

  • Hughes, T. R. J. (1987): The Finite Element Method, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Hughes, T. J. R., Pister, K. S. (1978): Consistent Linearization in Mechanics of Solids and Structures, Computers Sc Structures, 8, 391–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, C. (1987): Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge, U.K.

    Google Scholar 

  • Keller, H.B. (1977): Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. In: Rabinowitz, P. (ed.): Application of Bifurcation Theory, New York: Academic Press 1977, 359–384.

    Google Scholar 

  • Luenberger, D.G. (1984), Linear and Nonlinear Programming, Addision-Wesley, Masachusetts.

    MATH  Google Scholar 

  • Malkus, D.S.; Hughes, T.R.J. (1983): Mixed Finite Element Methods–Reduced and Selective Integration Techniques: a Unification of Concepts. Comp. Meth. Appl. Mech. Engng., 15, 63–81.

    Article  Google Scholar 

  • Malvern, L.E. (1969): Introduction to the Mechanics of a Continuous Medium, Prentice-gall, Englewood Cliffs.

    Google Scholar 

  • Marsden, J.E.; Hughes, T.R.J. (1983): Mathematical Foundations of Elasticity, Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Mittelmann, H.-D.; Weber, H. (1980): Numerical Methods for Bifurcation Problems–a Survey and Classification. In: Mittelmann, Weber (ed.): Bifurcation Problems and their Numerical Solution, ISNM 54, ( Basel, Boston, Stuttgart: Birkhâuser ), 1–45.

    Chapter  Google Scholar 

  • Moore, G., Spence, A. (1980): The Calculation of Turning Points of Nonlinear Equations, SIAM J. Num. Anal., 17, 567–576.

    Article  MathSciNet  MATH  Google Scholar 

  • Needleman, A. (1972): A Numerical Study of Necking in Circular Cylindrical Bars, J. Mech. Phys. Solids, 20, 111–127.

    Article  MATH  Google Scholar 

  • Ogden, R.W. (1972): Large Deformation Isotropic Elasticity on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proc. R. Soc., London, A(326), 565–584.

    Google Scholar 

  • Ogden, R. W. (1984): Non-linear elastic deformations, Ellis Horwood, Chichester.

    Google Scholar 

  • Ramm, E., (1981): Strategies for Tracing the Nonlinear Response Near Limit Points, in: Nonlinear Finite Element Analysis in Structural Mechanics, ed. Wunderlich, Stein Bathe, Springer, Berlin-Heidelberg-New-York.

    Google Scholar 

  • Rheinboldt, W.C. (1981): Numerical Analysis of Continuation Methods for Nonlinear Structural Problems. Comp. and Struct., 13, 103–113.

    MathSciNet  MATH  Google Scholar 

  • Riks, E. (1972): The Application of Newtons Method to the Problem of Elastic Stability. J. Appl. Mech., 39, 1060–1066.

    Article  MATH  Google Scholar 

  • Riks, E., (1984), Some computational aspects of stability analysis of nonlinear structures, Comp. Meth. Appl. Mech. Engng., 47, 219–260.

    Article  MATH  Google Scholar 

  • Schweizerhof, K., Wriggers, P. (1986): Consistent Linearizations for Path Following Methods in Nonlinear FE Analysis, Computer Methods in Applied Mechanics and Engineering, 59, 261–279.

    Article  MATH  Google Scholar 

  • Seydel, R. (1979): Numerical Computation of Branch Points in Nonlinear Equations, Numer. Math., 33, 339–352.

    MathSciNet  MATH  Google Scholar 

  • Simo, J.C.; Taylor, R.L. (1985): Consistent Tangent Operators for Rate-independent Elastoplasticity. Comp. Meth. Appl. Mech. Engng., 48, 101–118.

    Article  MATH  Google Scholar 

  • Simo, J.C. (1988): A Framework for Finite Strain Elastoplasticity Based on the Multiplicative Decomposition and Hyperelastic Relations. Part I: Formulation, Comp. Meth. Appl. Mech. Engng., 66, 199–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. (1988): A Framework for Finite Strain Elastoplasticity Based on the Multiplicative Decomposition and Hyperelastic Relations. Part II: Computational Aspects, Comp. Meth. Appl. Mech. Engng., 67, 1–31.

    Article  Google Scholar 

  • Simo, J. C., Wriggers, P., Schweizerhof, K.H., Taylor, R.L. (1986): Post-buckling Analysis involving Inelasticity and Unilateral Constraints, Int. J. Num. Meth. Engng., 23, 779–800.

    Article  MATH  Google Scholar 

  • Simo, J. C., K. D. Hjelmstad and R. L. Taylor (1984): Numerical Formulations for Finite Deformation Problems of Beams Accounting for the Effect of Transverse Shear, Comp. Meth. Appl. Mech. Engng., 42, 301–330.

    Article  MATH  Google Scholar 

  • Simo, J. C.; Marsden, J. E. (1984): On the Rotated Stress Tensor and the Material Version of the Doyle Erickson Formula, Arch. Rat. Mech. Anal., 86, 213–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., and T.J.R. Hughes (1992): Plasticity and Viscoplasticity: Numerical Analysis and Computational Aspects, Springer—Verlag, Berlin.

    Google Scholar 

  • Spence, A., Jepson A. D. (1985): Folds in the Solution of Two Parameter Systems and their Calculation. Part I, SIAM J. Numer. Anal., 22, 347–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, E.; Wagner, W.; Wriggers, P. (1988): Concepts of Modeling and Discretization of Elastic Shells for Nonlinear Finite Element Analysis. In: Whiteman, J. (ed.): The Mathematics of Finite Elements and Applications VI, Proceedings of MAFELAP 87, London: Academic Press.

    Google Scholar 

  • Taylor, R.L., (1985), Solution of linear equations by a profile solver, Engineering Computations, 2, 334–350.

    Google Scholar 

  • Truesdell, C.; Noll, W. (1965): The Non-Linear Field Theories of Mechanics. In: Flügge, S. (ed.): Handbuch der Physik, Band III/3, Berlin: Springer.

    Google Scholar 

  • Wagner, W., Wriggers, P. (1988): A Simple Method for the Calculation of Post-critical Branches, Engineering Computations, 5, 103–109.

    Article  Google Scholar 

  • Weber, H. (1981): On the Numerical Approximation of Secondary Bifurcation Problems, in: Numerical Solution of Nonlinear Equations, ed. Allgower, Glashof, Peitgen, Lecture Notes in Mathematics 878, Springer, Berlin, 407–425.

    Chapter  Google Scholar 

  • Werner, B., Spence, A. (1984): The Computation of Symmetry-Breaking Bifurcation Points, SIAM J. Num. Anal., 21, 388–399.

    Article  MathSciNet  MATH  Google Scholar 

  • Werner, B. (1984): Regular Systems for Bifurcation Points with Underlying Symmetries, in: Bifurcation Problems and their Numerical Solution, ISNM 70, ed. Mittelmann, Weber, Birkhäuser, Basel, Boston, Stuttgart, 562–574.

    Google Scholar 

  • Weinitschke, H. J. (1985): On the Calculation of Limit and Bifurcation Points in stability Problems of Elastic Shells, Int. J. Solids Structures, 21, 79–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Wriggers, P. (1988): Konsistente Linearisierungen in der Kontinuumsmechanik und ihre Anwendung auf die Finite—Element—Methode, Forschungs— und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Bericht F 88/4, Hannover.

    Google Scholar 

  • Wriggers, P.; Wagner, W.; Miehe, C. (1988): A Quadratically Convergent Procedure for the Calculation of Stability Points in Finite Element Analysis. Comp. Meth. Appl. Mech. Engng., 70, 329–347.

    Article  MATH  Google Scholar 

  • Wriggers, P., Gruttmann, F. (1989): Large deformations of thin shells: Theory and Finite-Element-Discretization, in Analytical and Computational Models of Shells, ed. A. K. Noor, T. Belytschko, J.C. Simo, ASME, CED-Vol. 3, 135–159.

    Google Scholar 

  • Wriggers, P., Simo, J. C. (1990): A General Procedure for the Direct Computation of Turning and Bifurcation Points, Int. J. Num. Meth. Engng., 30, 155–176.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O. C., Taylor, R. L. (1989): The Finite Element Method, Vol. 1, Mc Graw-Hill,London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Wriggers, P. (1993). Continuum Mechanics, Nonlinear Finite Element Techniques and Computational Stability. In: Stein, E. (eds) Progress in Computational Analysis of Inelastic Structures. International Centre for Mechanical Sciences, vol 321. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2626-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2626-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82429-0

  • Online ISBN: 978-3-7091-2626-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics