Continuum Mechanics, Nonlinear Finite Element Techniques and Computational Stability

  • P. Wriggers
Part of the International Centre for Mechanical Sciences book series (CISM, volume 321)


This three lectures course will give a modern concept of finite-element- analysis in nonlinear solid mechanics using material (Lagrangian) and spatial (Eulerian) coordinates. Elastic response of solids is treated as an essential example for the geometrically and material nonlinear behavior. Furthermore a brief introduction in stability analysis and the associated numerical algorithms will be given.

A main feature of these lectures is the derivation of consistent linearizations of the weak form of equilibrium within the same order of magnitude, taking also into account the material laws in order to get Newton-type iterative algorithms with quadratic convergence.

The lectures are intended to introduce into effective discretizations and algorithms based on a well founded mechanical and mathematical analysis.


Singular Point Bifurcation Point Extended System Stability Point Reference Configuration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, J. P. (1978): An Efficient Algorithm for the Determination of certain Bifurcation Points, J. Comp. Appl. Math., 4, 19–27.CrossRefGoogle Scholar
  2. Batoz, I.L., Dhatt, G. (1979): Incremental Displacement Algorithms for Non-linear Problems, Int. J. Num. Meth. Engng., 14, 1262–1267.MathSciNetCrossRefMATHGoogle Scholar
  3. Belytschko, T.; Tsay, C. S. (1983): A Stabilization Procedure for the Quadrilateral Plate Element with One–Point Quadrature. Int. J. Num. Meth. Engng., 19, 405–419.CrossRefMATHGoogle Scholar
  4. Bergan, P. G., Horrigmoe, G., Krakeland, B., Soreide, T. H. (1978): Solution Techniques for Non-linear Finite Element Problems, Int. J. Num. Meth. Engng., 12, 1677–1696.CrossRefMATHGoogle Scholar
  5. Brendel, B., Ramm, E. (1982): Nichtlineare Stabilitätsuntersuchungen mit der Methode der Finiten Elemente, Ing. Archiv 51, 337–362.MATHGoogle Scholar
  6. Bushnell, D., (1985): Computerized Buckling Analysis of Shells, Mechanics of Elastic Stability, Vol. 9, Martinus Nijhoff Publishers, Boston.CrossRefGoogle Scholar
  7. Ciarlet, P.G. (1988): Mathematical Elasticity, Volume I, North-Holland, Amsterdam.MATHGoogle Scholar
  8. Crisfield, M. A. (1981): A Fast Incremental/Iterative Solution Procedure that Handles Snap Through, Computers and Structures, 13, 55–62.CrossRefMATHGoogle Scholar
  9. Decker, D. W., Keller, H.B. (1980): Solution Branching — A Constructive Technique, in P.J. Holmes, ed., New Approaches to Nonlinear Problems in Dynamics ( SIAM, Philadelphia ) 53–69.Google Scholar
  10. Dennis J.E., Schnabel R.B., (1983): Numerical Methods for Unconstrained Optimiza- tion and Nonlinear Equations, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  11. Doyle, T.C., Ericksen, J.L., (1956): Nonlinear Elasticity, in Advances in Appl. Mech. I V, Academic Press, New York.Google Scholar
  12. Felippa, C. A. (1987): Traversing Critical Points with Penalty Springs, in: Transient/Dynamic Analysis and Constitutive Laws for Engineering Materials, ed. Pande, Middleton (Nijhoff, Dordrecht, Boston, Lancaster), C2/1–C2/8.Google Scholar
  13. Flory, P.J., (1961): Thermodynamic Relations for High Elastic Materials, Trans. Faraday Soc., 57, 829–838.MathSciNetCrossRefGoogle Scholar
  14. Gruttmann, F.; Stein, E. (1987): Tangentiale Steifigkeitsmatrizen bei Anwendung von Projektionsverfahren in der Elastoplastizitätstheorie. Ing. Archiv, 58, 1524.Google Scholar
  15. Hallquist, J. (1979): NIKE2D: An Implicit, Finite Deformation, Finite Element Code for Analysing the Static and Dynamic Response of Two—Dimensional Solids, University of California, LLNL, Rep. UCRL-52678.Google Scholar
  16. Hill, R. (1958): A General Theory of Uniqueness and Stability in Elastic—Plastic Solids, J. Mech. Phys. Solids, 6, 236–249.CrossRefMATHGoogle Scholar
  17. Hughes, T. R. J. (1987): The Finite Element Method, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  18. Hughes, T. J. R., Pister, K. S. (1978): Consistent Linearization in Mechanics of Solids and Structures, Computers Sc Structures, 8, 391–397.MathSciNetCrossRefMATHGoogle Scholar
  19. Johnson, C. (1987): Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge, U.K.Google Scholar
  20. Keller, H.B. (1977): Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. In: Rabinowitz, P. (ed.): Application of Bifurcation Theory, New York: Academic Press 1977, 359–384.Google Scholar
  21. Luenberger, D.G. (1984), Linear and Nonlinear Programming, Addision-Wesley, Masachusetts.MATHGoogle Scholar
  22. Malkus, D.S.; Hughes, T.R.J. (1983): Mixed Finite Element Methods–Reduced and Selective Integration Techniques: a Unification of Concepts. Comp. Meth. Appl. Mech. Engng., 15, 63–81.CrossRefGoogle Scholar
  23. Malvern, L.E. (1969): Introduction to the Mechanics of a Continuous Medium, Prentice-gall, Englewood Cliffs.Google Scholar
  24. Marsden, J.E.; Hughes, T.R.J. (1983): Mathematical Foundations of Elasticity, Englewood Cliffs: Prentice-Hall.MATHGoogle Scholar
  25. Mittelmann, H.-D.; Weber, H. (1980): Numerical Methods for Bifurcation Problems–a Survey and Classification. In: Mittelmann, Weber (ed.): Bifurcation Problems and their Numerical Solution, ISNM 54, ( Basel, Boston, Stuttgart: Birkhâuser ), 1–45.CrossRefGoogle Scholar
  26. Moore, G., Spence, A. (1980): The Calculation of Turning Points of Nonlinear Equations, SIAM J. Num. Anal., 17, 567–576.MathSciNetCrossRefMATHGoogle Scholar
  27. Needleman, A. (1972): A Numerical Study of Necking in Circular Cylindrical Bars, J. Mech. Phys. Solids, 20, 111–127.CrossRefMATHGoogle Scholar
  28. Ogden, R.W. (1972): Large Deformation Isotropic Elasticity on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proc. R. Soc., London, A(326), 565–584.Google Scholar
  29. Ogden, R. W. (1984): Non-linear elastic deformations, Ellis Horwood, Chichester.Google Scholar
  30. Ramm, E., (1981): Strategies for Tracing the Nonlinear Response Near Limit Points, in: Nonlinear Finite Element Analysis in Structural Mechanics, ed. Wunderlich, Stein Bathe, Springer, Berlin-Heidelberg-New-York.Google Scholar
  31. Rheinboldt, W.C. (1981): Numerical Analysis of Continuation Methods for Nonlinear Structural Problems. Comp. and Struct., 13, 103–113.MathSciNetMATHGoogle Scholar
  32. Riks, E. (1972): The Application of Newtons Method to the Problem of Elastic Stability. J. Appl. Mech., 39, 1060–1066.CrossRefMATHGoogle Scholar
  33. Riks, E., (1984), Some computational aspects of stability analysis of nonlinear structures, Comp. Meth. Appl. Mech. Engng., 47, 219–260.CrossRefMATHGoogle Scholar
  34. Schweizerhof, K., Wriggers, P. (1986): Consistent Linearizations for Path Following Methods in Nonlinear FE Analysis, Computer Methods in Applied Mechanics and Engineering, 59, 261–279.CrossRefMATHGoogle Scholar
  35. Seydel, R. (1979): Numerical Computation of Branch Points in Nonlinear Equations, Numer. Math., 33, 339–352.MathSciNetMATHGoogle Scholar
  36. Simo, J.C.; Taylor, R.L. (1985): Consistent Tangent Operators for Rate-independent Elastoplasticity. Comp. Meth. Appl. Mech. Engng., 48, 101–118.CrossRefMATHGoogle Scholar
  37. Simo, J.C. (1988): A Framework for Finite Strain Elastoplasticity Based on the Multiplicative Decomposition and Hyperelastic Relations. Part I: Formulation, Comp. Meth. Appl. Mech. Engng., 66, 199–219.MathSciNetCrossRefMATHGoogle Scholar
  38. Simo, J.C. (1988): A Framework for Finite Strain Elastoplasticity Based on the Multiplicative Decomposition and Hyperelastic Relations. Part II: Computational Aspects, Comp. Meth. Appl. Mech. Engng., 67, 1–31.CrossRefGoogle Scholar
  39. Simo, J. C., Wriggers, P., Schweizerhof, K.H., Taylor, R.L. (1986): Post-buckling Analysis involving Inelasticity and Unilateral Constraints, Int. J. Num. Meth. Engng., 23, 779–800.CrossRefMATHGoogle Scholar
  40. Simo, J. C., K. D. Hjelmstad and R. L. Taylor (1984): Numerical Formulations for Finite Deformation Problems of Beams Accounting for the Effect of Transverse Shear, Comp. Meth. Appl. Mech. Engng., 42, 301–330.CrossRefMATHGoogle Scholar
  41. Simo, J. C.; Marsden, J. E. (1984): On the Rotated Stress Tensor and the Material Version of the Doyle Erickson Formula, Arch. Rat. Mech. Anal., 86, 213–231.MathSciNetCrossRefMATHGoogle Scholar
  42. Simo, J.C., and T.J.R. Hughes (1992): Plasticity and Viscoplasticity: Numerical Analysis and Computational Aspects, Springer—Verlag, Berlin.Google Scholar
  43. Spence, A., Jepson A. D. (1985): Folds in the Solution of Two Parameter Systems and their Calculation. Part I, SIAM J. Numer. Anal., 22, 347–368.MathSciNetCrossRefMATHGoogle Scholar
  44. Stein, E.; Wagner, W.; Wriggers, P. (1988): Concepts of Modeling and Discretization of Elastic Shells for Nonlinear Finite Element Analysis. In: Whiteman, J. (ed.): The Mathematics of Finite Elements and Applications VI, Proceedings of MAFELAP 87, London: Academic Press.Google Scholar
  45. Taylor, R.L., (1985), Solution of linear equations by a profile solver, Engineering Computations, 2, 334–350.Google Scholar
  46. Truesdell, C.; Noll, W. (1965): The Non-Linear Field Theories of Mechanics. In: Flügge, S. (ed.): Handbuch der Physik, Band III/3, Berlin: Springer.Google Scholar
  47. Wagner, W., Wriggers, P. (1988): A Simple Method for the Calculation of Post-critical Branches, Engineering Computations, 5, 103–109.CrossRefGoogle Scholar
  48. Weber, H. (1981): On the Numerical Approximation of Secondary Bifurcation Problems, in: Numerical Solution of Nonlinear Equations, ed. Allgower, Glashof, Peitgen, Lecture Notes in Mathematics 878, Springer, Berlin, 407–425.CrossRefGoogle Scholar
  49. Werner, B., Spence, A. (1984): The Computation of Symmetry-Breaking Bifurcation Points, SIAM J. Num. Anal., 21, 388–399.MathSciNetCrossRefMATHGoogle Scholar
  50. Werner, B. (1984): Regular Systems for Bifurcation Points with Underlying Symmetries, in: Bifurcation Problems and their Numerical Solution, ISNM 70, ed. Mittelmann, Weber, Birkhäuser, Basel, Boston, Stuttgart, 562–574.Google Scholar
  51. Weinitschke, H. J. (1985): On the Calculation of Limit and Bifurcation Points in stability Problems of Elastic Shells, Int. J. Solids Structures, 21, 79–95.MathSciNetCrossRefMATHGoogle Scholar
  52. Wriggers, P. (1988): Konsistente Linearisierungen in der Kontinuumsmechanik und ihre Anwendung auf die Finite—Element—Methode, Forschungs— und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Bericht F 88/4, Hannover.Google Scholar
  53. Wriggers, P.; Wagner, W.; Miehe, C. (1988): A Quadratically Convergent Procedure for the Calculation of Stability Points in Finite Element Analysis. Comp. Meth. Appl. Mech. Engng., 70, 329–347.CrossRefMATHGoogle Scholar
  54. Wriggers, P., Gruttmann, F. (1989): Large deformations of thin shells: Theory and Finite-Element-Discretization, in Analytical and Computational Models of Shells, ed. A. K. Noor, T. Belytschko, J.C. Simo, ASME, CED-Vol. 3, 135–159.Google Scholar
  55. Wriggers, P., Simo, J. C. (1990): A General Procedure for the Direct Computation of Turning and Bifurcation Points, Int. J. Num. Meth. Engng., 30, 155–176.CrossRefMATHGoogle Scholar
  56. Zienkiewicz, O. C., Taylor, R. L. (1989): The Finite Element Method, Vol. 1, Mc Graw-Hill,London.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • P. Wriggers
    • 1
  1. 1.T. H. DarmstadtDarmstadtGermany

Personalised recommendations