Shake-Down Analysis for Perfectly Plastic and Kinematic Hardening Materials

  • E. Stein
  • G. Zhang
  • R. Mahnken
Part of the International Centre for Mechanical Sciences book series (CISM, volume 321)

Summary and Scope

This course will give an introduction to theoretical and numerical shake-down analysis of perfectly plastic and kinematic hardening materials in the framework of geometrical linear theory.


Residual Stress Yield Surface Ultimate Load Gaussian Point Kinematic Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BATHE, J.K.: Finite Element Procedures in Engineering Analysis, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1982).Google Scholar
  2. [2]
    BATOZ, J.L., BATHE, J.K., Ho, L.W.:A study of three-node triangular plate bending elements, Int. J. Numer. Meth. Eng. 15 (1980), 1771–1812.MATHGoogle Scholar
  3. [3]
    BELYTSCHKO, T.: Plane stress shakedown analysis by finite elements, Int. J. Mech. Sci. 14 (1972), 619–625.CrossRefGoogle Scholar
  4. [4]
    BERTSEKAS, D.P.: Projected Newton methods for optimization problems with simple constraints, SIAM J. Con. Opt., Vol 20, No 2 (1982), 221–246.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    BESSELING, J.F.: Models of metal plasticity: theory and experiment, in: Plasticity Today (Ed. Sawczuk and Bianchi ), Elsevier, Appl. Sci. Publ. London-New York (1985), 97–113.Google Scholar
  6. [6]
    BLEICH, H: Über die Bemessung statisch unbestimmter Stahlwerke unter Berücksichtigung des elastisch-plastischen Verhaltens des Baustoffes, Bauingenieur 13 (1932), 261–267.Google Scholar
  7. [7]
    BORKOWSKI, A., KLEIBER, M.: On a numerical approach to shakedown analysis of structures, Comput. Methods Appl. Mech. Eng. 22 (1980), 101–119.MATHGoogle Scholar
  8. [8]
    BREE, J.: Elastic-plastic behavior of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements, J. Strain Analysis 2 (1967), 226–238.CrossRefGoogle Scholar
  9. [9]
    BUCKLEY, A.; LENIR, A.: QN-like variable storage conjugate gradients. Mathematical Programming, 27 (1983), 155–175.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    CORRADI, L.: Dynamic shakedown in elastic-plastic bodies, J. Eng. Mech. Div., Proc. of the American Society of Civil Engineers 106 No EM3 (1980), 481–499.Google Scholar
  11. [11]
    CORRADI, L., ZAVELANI, I.: A linear programming approach to shakedown analysis of structures, Comp. Mech. Appl. Mech. Eng. 3 (1974), 37–53.MathSciNetCrossRefGoogle Scholar
  12. [12]
    CYRAS, A.: Optimization Theory in Limit Analysis of a Solid Deformable Body, Mintis Publ. House, Vilnius (1971).Google Scholar
  13. [13]
    DENNIS, J.E.; SCHNABEL, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, New Jersey (1983).MATHGoogle Scholar
  14. [14]
    DE DONATO, O.: Second shakedown theorem allowing for cycles of both loads und temperature, Ist. Lombardo Scienza Lettere (A) 104, 265–277.Google Scholar
  15. [15]
    DRUCKER, D.C.: A more fundamental approach to plasticity stress-strain relations, Proceedings of the 1st U.S. National Congress of Applied Mechanics, ASME (1951), 487–491.Google Scholar
  16. [16]
    DRUCKER, D.C.: A definition of stable inelastic material, J. App. Mech. 26, Trans. ASME 81, Series E (1959), 101–106.Google Scholar
  17. [17]
    FIACCO, A.V.; MCCORMICK, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York (1968).MATHGoogle Scholar
  18. [18]
    GILL, P.E.; MURRAY, W.; WRIGHT, M.H.: Practical Optimization, Academic Press, Inc. London (1981).Google Scholar
  19. [19]
    GOKHFELD, D.A., CHERNIAVSKY, O.F.: Limit Analysis of Structures at Thermal Cycling, Sijthoff and Noordhoff (1980).Google Scholar
  20. [20]
    GROSS-WEEGE, J.: Zum Einspielverhalten von Flächentragwerken, PhD thesis, Inst. für Mech., Ruhr-Universität Bochum (1988).Google Scholar
  21. [21]
    GRÜNING, M: Die Tragfähigkeit statisch unbestimmter Tragwerke aus Stahl bei beliebig häufig wiederholter Belastung, Springer Verlag, Berlin (1926).Google Scholar
  22. [22]
    GRUTTMANN, F., STEIN, E.: Tangentiale Steifigkeitsmatrizen bei Anwendung von Projektionsverfahren in der Elastoplastizitätstheorie, Ing.-Arch. 58 (1987), 15–24.CrossRefGoogle Scholar
  23. [23]
    HAN, S.P.: A globally convergent method for nonlinear programming, J. Opt. Th. Appl. 22 (1977), 297–309.CrossRefMATHGoogle Scholar
  24. [24]
    HILL, R.: Mathematical Theory of Plasticity, Oxford (1950).Google Scholar
  25. [25]
    KACHANOV, L.M.: Foundations of the Theory of Plasticity, North-Holland Publishing Company, Amsterdam • London (1971).MATHGoogle Scholar
  26. [26]
    KOITER, W.T.: A new general theorem on shake-down of elastic-plastic structures, Proc. Koninkl. Akad. Wet. B 59 (1956), 24–34.MathSciNetMATHGoogle Scholar
  27. [27]
    KOITER, W.T.: General theorems for elastic-plastic solids,in: Progress in Solid Mechanics (Ed. SNEDDON and HILL), North Holland, Amsterdam (1960), 165— 221Google Scholar
  28. [28]
    KÖNIG, J.A.: Shakedown of strainhardening structures, First Conadian Congr. Appl. Mech., Quebec (1967).Google Scholar
  29. [29]
    KÖNIG, J.A., MAIER, G.: Shakedown analysis of elastoplastic structures, a review of recent developments, Nucl. Eng. Design 66 (1981), 81–95.CrossRefGoogle Scholar
  30. [30]
    KÖNIG, J.A.: Shakedown of Elastic-Plastic Structures, PWN-Polish Scientific Publishers, Warsaw (1987).Google Scholar
  31. [31]
    LUENBERGER, D.G.: Linear and Nonlinear Programming, 2nd Ed., Addison-Wesley Publishing Company, New York (1984).MATHGoogle Scholar
  32. [32]
    MAIER, G.: A shakedown matrix theory allowing for workhardening and second-order geometric effects, Proc. Sypm. Foundations of Plasticity, Warsaw (1972).Google Scholar
  33. [33]
    MANDEL, J.: Adaptation d’une structure plastique ecrouissable et approximations, Mech. Res. Comm., 3 (1976), 483.MATHGoogle Scholar
  34. [34]
    MARTIN, J.B.: Plasticity, MIT Press, Boston (1975).Google Scholar
  35. [35]
    MASING, G.: Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern 3 (1924), 231–239.Google Scholar
  36. [36]
    MATTHIES, H., STRANG, G.: The solution of nonlinear finite element equations, Int. J. Num. Meths. Eng., 14, (1979), 1613–1623.MathSciNetMATHGoogle Scholar
  37. [37]
    MELAN, E.: Theorie statisch unbestimmter Systeme aus ideal plastischem Baustoff, Sitzber. Akad. Wiss. Wien IIa 145 (1936), 195–218.MATHGoogle Scholar
  38. [38]
    MELAN, E.: Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veränderlicher Belastung, Sitzber. Akad. Wiss. Wien IIa 147 (1938), 73–78.MATHGoogle Scholar
  39. [39]
    MELAN, E.: Zur Plastizität des räumlichen Kontinuums, Ing.-Arch. 8 (1938), 116–126.CrossRefGoogle Scholar
  40. [40]
    MRÓZ, Z.: On the description of anisotropic workhardening, J. Mech. Phys. Solids 15 (1967), 163–175.CrossRefGoogle Scholar
  41. [41]
    MÜLLER-HOEPPE, N., PAULUN, J., STEIN, E.: Einspielen ebener Stabtragwerke unter Normalkrafteinfluss, Bauingenieur 61 (1986), 23–26.Google Scholar
  42. [42]
    NAZARETH, L.: A relationship between the BFGS and conjugate gradient algorithms and its implications for new algorithms, SIAM J. Numer. Analysis, 16 (1980), 773–782.MathSciNetGoogle Scholar
  43. [43]
    NAZARETH, L.; NOCEDAL, J.: Conjugate direction methods with variable storage, Mathematical Programming, 23 (1982), 326–340.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    NGUYEN DANG, H., MORELLE, P.: Numerical shakedown analysis.of plates and shells of revolution, Proceedings of 3rd world congress and exhibition on FEM’s, Beverly Hills (1981).Google Scholar
  45. [45]
    NEAL, B.G.: Plastic collapse and shake-down theorems for structures of strain-hardening material, J. Aero. Sci. 17 (1950), 297–306.MathSciNetCrossRefGoogle Scholar
  46. [46]
    NOCEDAL, J.: Updating quasi-Newton matrices with limited storage, Mathematical Programming, 35 (1980), 773–782.MathSciNetMATHGoogle Scholar
  47. [47]
    POWELL, M.J.D.: A Fast Algorithm for Nonlinear Constrained Optimization Calculations, In: Watson, G.A.: Numerical Analysis; Proc. of the Biennial Conference held at Dundee (June 1977).Google Scholar
  48. [48]
    PONTER, A.R.S.: A general shakedown theorem for elastic-plastic bodies with workhardening,Proc. 3rd SMIRT Conf. London (1975), paper L 5/2.Google Scholar
  49. [49]
    PRAGER, W.: The theory of plasticity: a survey of recent achievements, Proc. Inst. Mech. Engrs. 169 (1955), 41.MathSciNetCrossRefGoogle Scholar
  50. [50]
    ROZENBLUM, V.I.: On shakedown theory of elastic-plastic bodies (in Russian), Izw. AN SSSR, OTN 6 (1958).Google Scholar
  51. [51]
    SAWCZUK, A.: On incremental collapse of shells under cyclic loading, Second IUTAM Symp. on Theory of Thin Shells, Copenhagen 1967, Springer Verlag, Berlin (1969), 328–340.Google Scholar
  52. [52]
    SCHEER, J., SCHEIBE, H.J., KUCH, D.: Untersuchung von Trägerschwächungen unter wiederholter Belastung bis in den plastischen Bereich, Bericht Nr. 6099, Institut für Stahlbau, TU Braunschweig (1990).Google Scholar
  53. [53]
    SCHITTKOWSKI, K.: The nonlinear programming method of Wilson, Han, and Powell with an augmented Larangian type line search function, Numer. Math. 38 (1981), 83–127.MathSciNetMATHGoogle Scholar
  54. [54]
    SHEN, W.P.: Traglast-und Anpassungsanalyse von Konstruktionen aus elastisch, ideal plastischem Material, Dissertation, Inst. für Computeranwendung, Uni Stuttgart (1986).Google Scholar
  55. [55]
    SIMO, J.C., TAYLOR, R.L.: Consistent tangent operators for rate—independent elastoplasticity, Comput. Meth. Appl. Mech. Eng. 48 (1985), 101–118.CrossRefMATHGoogle Scholar
  56. [56]
    STEIN, E., ZHANG, G., MAHNKEN, R., KÖNIG, J.A.: Micromechanical modelling and computation of shakedown with nonlinear kinematic hardening including examples for 2-D problems, Proc. of CSME Mechanical Engineering Forum, Toronto (1990), 425–430.Google Scholar
  57. [57]
    STEIN, E., ZHANG, G., KÖNIG, J.A.: Micromechanical modelling and computation of shakedown with nonlinear kinematic hardening including examples for 2-D problems, in: Recent Developments in Micromechanics (Ed. AXELRAD, D.R. and MUSCHIK, W. ), Springer Verlag, Berlin (1990).Google Scholar
  58. [58]
    STEIN, E., ZHANG, G., KÖNIG, J.A.: Shakedown with nonlinear hardening including structural computation using finite element method, to appear in Int. J. Plasticity.Google Scholar
  59. [59]
    WASHIZU, K.: Variational Methods in Elasticity and Plasticity, 3rd edition, Pergamon Press (1982).Google Scholar
  60. [60]
    WEICHERT, D.: On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures, Int. J. Plasticity 2 (1986), 135–148.CrossRefMATHGoogle Scholar
  61. [61]
    WEICHERT, D., GROSS-WEEGE, J.: The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition, Int. J. Mech. Sci. 30 (1988), 757–767.CrossRefMATHGoogle Scholar
  62. [62]
    ZHANG, G., BISCHOFF, D.: Traglastberechnung mit Hilfe der kinematischen Formulierung, Z. angew. Math. Mech. 68 (1988), T267 — T268.Google Scholar
  63. [63]
    ZHANG, G.: Einspielen und dessen numerische Behandlung für ideal plastische bzw. kinematisch verfestigende Materialien, PhD thesis, Universität Hannover (1991).Google Scholar
  64. [64]
    ZIEGLER, H.: A modification of Prager’s hardening rule, Quart. Appl. Math. 17, 55–65.Google Scholar
  65. [65]
    ZIENKIEWICZ, O.C.: The Finite Element Method, 3rd Ed., McGRAW-HILL Book Company London (1979).Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • E. Stein
    • 1
  • G. Zhang
    • 1
  • R. Mahnken
    • 1
  1. 1.University of HannoverHannoverGermany

Personalised recommendations