Topics on Unilateral Contact Problems of Elasticity and Inelasticity

  • J. J. Telega
Part of the International Centre for Mechanical Sciences book series (CISM, volume 302)


These lectures present selected unilateral boundary and initial value problems of elasticity and inelasticity. Particularly, for elastic Signorini’s problem with general subdifferential sliding rule two dual problems are derived as well as the bidual one. Some historical and modern views on friction phenomenon are briefly presented. The next chapter is concerned with unilateral frictionless and frictional problems for viscoelastic, plastic and viscoplastic bodies. In the last chapter homogenization of microfissured elastic solids and plates is studied. It is assumed that microfissures behave unilaterally.


Variational Inequality Contact Problem Signorini Problem Load Multiplier Frictionless Case 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Armstrong, G. C., V. C. Mow: Biomechanios of Normal and Osteoarthrotio Articular Cartilage, In: Clinical Trends in Orthopaedics, Eds. P. D. Wilson and L. R. Straub /, Thieme-Stratton, New York 1982, 189–197.Google Scholar
  2. 2.
    Atkinson, J. R., D. Dowson, G. H. Isaac and B. M. Wroblewski: Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints. II: A microscopical study of the surfaces of Charnley polyethylene acetabular sockets. III: The measurement of internal volume changes in explanted Charnley sockets after 2–16 years in vivo and determination of wear factors, Wear, 104/1985/, 217–224, 225–244.Google Scholar
  3. 3.
    Baiocchi, C. and A. Capelo: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, John Wiley and Sons, Chichester 1984.MATHGoogle Scholar
  4. 4.
    Bayada, G. and M. Chambat: On the Various Aspects of the Thin Film Equation in Hydrodynamic Lubrication when the Proughness Occurs, In: Application of Multiple Scaling in Mechanics, Eds. P. G. Ciarlet and E. Sanchez-Palencia /, Masson, Paris 1987.Google Scholar
  5. 5.
    Bensoussan, A. and J. L. Lions: Application desTnéquations Variationelles et Controle Stochastique, Dunod, Paris 1978.Google Scholar
  6. 6.
    Bernadou, M., P. Christel and Y. M. Crolet: Simulation Numérique des Contraintes aux Interfaces Prothése de Hanbhe-Os, In: Computing Methods in Applied Sciences and Engineering VI, Eds. R. Glowinski and J. L. Lions /, Elsevier Science Publishers, North Holland 1984, 381–400.Google Scholar
  7. 7.
    Boesavit, A., A. Damlamian and M. Frémond /Eds): Free Boundary Problems: Applications and Theory, Vol. III, and IV, Pitman, London 1985.Google Scholar
  8. 8.
    Brezis, H.: Problémes unilatéraux, J. Math. Pures Appl., 51/1972/, 1–168.MATHMathSciNetGoogle Scholar
  9. 9.
    Brown, T. D. and A. M. Gigioia III: A contact-coupled finite element analysis of the natural adult hip, J. Biomeohanios, 17/1984/, 437–448.Google Scholar
  10. 10.
    Chand, R., E. Haug and K. Rim: Stresses in the human knee joint, J. Biomeohanics, 9/1976/, 417–422.Google Scholar
  11. 11.
    Chipot, M.: Variational Inequalities and Flow in Porous Media, Springer-Verlag, New York-Berlin 1984.MATHGoogle Scholar
  12. 12.
    Clech, J. P., L. M. Keer and J. L. Lewis: A model of tension and compression cracks with cohesive zone at a bone-cement interface, J. Biomechanical Eng., 107/1985/, 175–182.Google Scholar
  13. 13.
    Crolet,J. -M.: Lancrage du composant cotyloldien dans les prothèses totales de hanche: simulation exploratoire Thèse de Doctorat d’Etat en Sciences, Université de Technologie de Compiègne, 1985.Google Scholar
  14. 14.
    Del Piero, G. and F. Maceri /Eds): Unilateral Problems in Structural Analysis, Springer-Verlag, Wien 1985.MATHGoogle Scholar
  15. 15.
    Dowson, D. and G. R. Higgison: Elasto-Hydrodynamic Lubrication, Pergamon Press, Oxford 1977.Google Scholar
  16. 16.
    Dowson, D. and N. C. Wallbridge: Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints. I: Charnley prostheses with polytetrafluoroethylene acetabular cups, Wear, 104/1985/, 203–215.Google Scholar
  17. 17.
    Dowson, D., B. J. Gillis and J. R. Atkinson: Penetration of Metallic Femoral Components into Polymeric Tibial Components Observed in a Knee Joint Simulator, In: ACS Symposium Series No 287, Polymer Wear and Its Control, Eds. Lieng-Huang Lee, American Chemical Society, 1985, 215–228.Google Scholar
  18. 18.
    Duvaut, G. and J. L. Lions: Les Inéquations en Mécanique et en Physique, Dunod, Paris 1972.MATHGoogle Scholar
  19. 19.
    Elliot, C. M. and J. R. Ockendon: Weak and Variational Methods for Moving Boundary Problems, Pitman, London 1982.Google Scholar
  20. 20.
    Fasano, A. and M. Primioeno /Eds): Free Boundary Problems: Theory and Applications, Vol. I and II, Pitman, London 1983.MATHGoogle Scholar
  21. 21.
    Friedman, A.: Variational Principles and Free-Boundary Problems, John Wiley and Sons, New York 1982.MATHGoogle Scholar
  22. 22.
    Fung, Y. C.: Biomechanics: Mechanical Properties of Living Tissue, Springer-Verlag, New York-Heidelberg-Berlin 1981.Google Scholar
  23. 23.
    Galini L. A.: Development of the Theory of Contact Prob-lems n USSR, Izd. Nauka, Moskva 1976. /in Russian/Google Scholar
  24. 24.
    Galin, L. A.: Contact Problems of the Theory of Elasticity and Viscoelastieity, Izd. Nauka, Moskva 1980. /in Russian/Google Scholar
  25. 25.
    Gladwell, G. M. L.: Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff, Alphen aan den Rijn 1980.MATHGoogle Scholar
  26. 26.
    Hayes, W. C., L. M. Keer, G. Herrmann and L. F. Mookros: A mathematical analysis for indentation tests of articular cartilage, J. Biomeohanics, 5/1972/, 541–551.Google Scholar
  27. 27.
    Hori, R. Y. and L. F. Mookros: Indentation testa of human articular cartilage, J. Biomechanios, 9/1976)259–268.Google Scholar
  28. 28.
    Huiskes, R.: Some fundamental aspects of human joint replacement, Acta Orthop. Scand., Supplementum, 1980, 1–208.Google Scholar
  29. 29.
    Huiskes, R.: Design Fixation and Stress Analysis of Permanent Orthopedic Implants: the Hip Joint, In: Functional Behavior of Orthopedic Biomaterials, Vol. II: Applications /Eds P. Ducheyne and G. W. Hastings /, CRC Press Inc., Boca Ration, Florida 1984, 121–162.Google Scholar
  30. 30.
    Huiskes, R.: Biomechanics of Bone-Implant Interactions, In: Frontiers in Biomechanics /Eds G. W. Sehmid-Sohönbein, S. L. -Y. Woo and B. W. Zweifach /, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo 1986, 245–262.Google Scholar
  31. 31.
    Huiskes, R. and E. Y. S. Chayo: A survey of finite element analysis in orthopedic biomechanics: the first decade, J. Biomechanics, 16/1983/, 385–409.Google Scholar
  32. 32.
    Johnson, K. L.: Contact Mechanics, Cambridge University Press, Cambridge 1985.MATHGoogle Scholar
  33. 33.
    Kalker, J. J.: A survey of the mechanics of contact between solid bodies, ZAMM 57/1977/, T3 - T17.MATHGoogle Scholar
  34. 34.
    Kikuchi, N. and J. T. Oden: Contact Problems in Elasticity, SIAM Studies in Applied Mathematics, Philadelphia 1986.Google Scholar
  35. 35.
    Kinderlehrer, D. and G. Stampacchia: An Introduction to Variational Inequalities and Their Applications, Academic Press, New York 1980.MATHGoogle Scholar
  36. 36.
    Mow, V. C. and W. M. Lai: Mechanics of animal joints, Ann. Rev. Fluid Mech., 11/1979/, 247–288.ADSGoogle Scholar
  37. 37.
    Mow, V. C. and W. M. Lai: Recent developments in synovial joint biomechanics, SIAM Review 23/1980/, 275–317.MathSciNetGoogle Scholar
  38. 38.
    Mow, V. C., M. H. Holmes and W. M. Lai: Fluid transport and mechanical properties of articular cartilage: a review, J. Biomechanics, 17/1984/, 377–394.Google Scholar
  39. 39.
    Murase, K., R. D. Crowninshield, D. R. Pedersen and T. S. Chang: An analysis of tibial component design in total knee arthoplasty, J. Biomechanics, 16/1983/, 13–22.Google Scholar
  40. 40.
    Myers, E. R. and V. C. Mow: Biomechanics of Cartilage and its Response to Biomechanical Stimuli, In: Cartilage, vol. 1, Eds. B. K. Hall, Academic Press 1983.Google Scholar
  41. 41.
    Naumann, J.: Einführung in die Theorie parabolischer Variationsungleichungen, Teubner-Texte zur Mathematik, Bd. 64, Leipzig 1984.Google Scholar
  42. 42.
    Oh, K. P.: The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem, Trans. ASME, J. Tribology, 108/1986/, 598–604.Google Scholar
  43. 43.
    Neóas, J. N. and I. Hlavacek: Mathematical Theory of Elastic and Elastioo-Plastid Bodies: An Introduction, Elsevier, Amsterdam 1981.Google Scholar
  44. 44.
    Panagiotopoulos, P. D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser Verlag Boston-Basel-Stuttgart 1985.MATHGoogle Scholar
  45. 45.
    Pinkus, O.: The Reynolds centennial: a brief history of the theory Of hydrodynamic lubrication, J. Tribology, 109/1987/, 2–20.Google Scholar
  46. 46.
    Rodrigues, J. -F.: Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, 134, Amsterdam 1987.Google Scholar
  47. 47.
    Rvachev, V. L. and V. S. Protzenko: Contact Problems of the Theory of Elasticity for Non-Classical Domains, Naukova Dumka, Kiev 1977. /in Russian/Google Scholar
  48. 48.
    Saho, S. and S. Pal: Improvement of mechanical properties of acrylic bone cement by fibre reinforcement, J. Biomechanics, 17/1984/, 467–478.Google Scholar
  49. 49.
    Santare, M. H., L. M. Keer and J. L. Lewis: Cracks emanating from a fluid filled void loaded in compression: application to the bone-implant interface, J. Biomech. Eng. 109/1987/, 55–59.Google Scholar
  50. 50.
    Selvadurai, A. P. S. and G. Z. Voyiadjis /Eds): Mechanics of Material Interfaces, Elsevier, Amsterdam. 1986.MATHGoogle Scholar
  51. 51.
    Seymov, V. M.: Dynamic Contact Problems, Naukova Dumka, Kiev 1976. /in Russian/Google Scholar
  52. 52.
    Stormont, T. J., K. N. An, B. F. Morrey and E. Y. Chao: Elbow joint contact study: comparison of techniques, J. Biomechanics, 18/1985/, 329–336.Google Scholar
  53. 53.
    Strozzi, A.: An assessment of the numerical solution of the elastohydrodynamic problem for soft contacts, Wear 115/1987/, 53–61.Google Scholar
  54. 54.
    Stlsskind, C.: Heinrich Hertz: Man and Scientist, in Contact Mechanics and Wear of Rail Wheel Systems, Proc. of the Int. Symp. held at University of British Columbia, July 6–9,1982,/Eds J. Kolousek, J. Dukkipat and G. M. L. Gladwell/, University of Waterloo Press 1983, 149–157.Google Scholar
  55. 55.
    Telega, J. J.: Variational methods in contact problems of mechanics, Uspekhi Mekhaniki Adv. in Mechanics, in print /in Russian/Google Scholar
  56. 56.
    Tribology — Friction, Lubrication and Wear. Fifty Years On, Vol. I and II, International Conference, 1–3 July 1987, London, Published for the Institution of Mechanical Engineers by Mechanical Engineering Publications Ltd, London 1987.Google Scholar
  57. 57.
    Yang, R. J., K. K. Choi, R. D. Crowninshield and R. A. Brand: Design sensitivity analysis: a new method for inplant design and a comparison with parametric finite element analysis, J. Biomechanics, 17/1984/, 849–854.Google Scholar

Chapter 2

  1. 58.
    Akagaki, T. and K. Kato: Plastic flow process of surface layers in flow wear under boundary lubricated conditions, Wear, 117/1987/, 179–196.Google Scholar
  2. 59.
    Aleksandrovich, A. I., B. S. Vekshin and I. N. Potapov: Tensor of friction coefficients of anisotropie surfaces, Trenye i Iznos, 6/1985/, 996–1004 /in Russian/Google Scholar
  3. 60.
    Antoniou, S. S., A. Cameron and C. R. Gentle: The friction-speed relation from stick-slip data,. Wear, 36/1976/, 235–254.Google Scholar
  4. 61.
    Armstrong, C. G. and V. C. Mow: Friction, Lubrication and Wear of Synovial Joints, In: Scientific Foundations of Orthopaedics and Traumatology. Eds, R. Owen, J. W. Goodfellow and P. G. Bullough, William Heineman, London 1980, 223–232.Google Scholar
  5. 62.
    Asoione, L. and D. Bruno: An analysis of the unilateral contact problem with friction of beams and plates on an elastichalf-space, University of Calabria, Department of Structures, Report 77, 1985.Google Scholar
  6. 63.
    Ascione, L., D. Bruno and A. G. Grimaldi: Some Static and Dynamical Contact Problems Between a Mindlin Plate and an Elastic Foundation, In: Euromech 219, Refined Dynamical Theories of Beams, Plates and Shells and Their Applications, September 23–26, 1986, Kassel; Springer-Verlag, in print.Google Scholar
  7. 64.
    Atack, D. and D. Tabor: The friction of wood, Proc. Roy. Soo. London A246/1958/, 539–555.ADSGoogle Scholar
  8. 65.
    Aybinder, S. B. and E. L. Tyunina: An Introduction to Theory of Friction of Polymers, Riga 1978 /in Russian/.Google Scholar
  9. 66.
    Ball, J. M., J. C. Currie and P. J. Olver: Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Funct. Analysis, 41/1981/, 135–174.MATHMathSciNetGoogle Scholar
  10. 67.
    Banerjee, A. K.: Influence of kinetic friction on the critical velocity of stick-slip motion, Wear, 12/1986/, 107–116.Google Scholar
  11. 68.
    Barquins, M.: Adherence, Friction and Wear of Rubber–Like Materials, in: Tribology–Friction, Lubrication and Wear. Fifty Tears On, Vol. I Inst. Conf.,1–3 July 1987, London, Published for the Institution of Mechanical Engineers by Mechanical Engineering Publications Ltd, London 1987, 227–238.Google Scholar
  12. 69.
    Bartenev, G. M. and Yu. V. Zelenev: Physics and Mechanics of Polymers, Vyschaya Schola, Moskva 1983. /in Russian/Google Scholar
  13. 70.
    Bay, N. and T. Wanheim: Real area of contact and friction stress of high pressure sliding contact, Wear 38/1976/, 201–209.Google Scholar
  14. 71.
    Bereznyakov, A. I., S. V. Ventzel, V. N. Mamayev and S. V. Merkulova: Temperature dependence of friction force, Problemy Trenya i Iznaschyvanya, 27/1985/, 11–13 /in Russian/.Google Scholar
  15. 72.
    Barthel D. and Ph. Vergne: An elastic approach to rough contact with asperity interactions, Wear, 117/1987/, 211–222.Google Scholar
  16. 73.
    Bielaki, W. R. and J. J. Telega: A note on duality for von Kârman plates in the case of the obstacle problem, Arch. Mech. 37/1985/, 135–141.Google Scholar
  17. 74.
    Bielaki, W. R. and J. J. Telega: A contribution to contact problems for a class of solids and struotures, Arch. Mech. 37/1985/, 303–320.Google Scholar
  18. 75.
    Bikerman, J. J.: Adhesion in friction, Wear, 39/1976/, 1–13.Google Scholar
  19. 76.
    Blok, H.: Thermo-Tribology-Fifty Years On: in:Tribology-Friction, Lubrication and Wear, Fifty Years On, Vol. I, Int. Conference, 1–3 July 1987, Proc. of the Institution of Mechanical Engineers, Mechanical Engineering Publications Ltd, London 1987, 1–8.Google Scholar
  20. 77.
    Bowden, E. P. and D. Tabor: Friction and Lubrication of Sol’ds, Vol. I Clarendon, Oxford 1950, Vol. II. 1964.Google Scholar
  21. 78.
    Buckley, D. H.: Surface Effects in Adhesion, Friction, Wear and Lubrication, Elsevier Scientific Pub1. Co., Amsterdam 1981.Google Scholar
  22. 79.
    Burton, R. A.: Thermal deformation in frictionally heated contact, Wear, 59/1980/, 1–20.Google Scholar
  23. 80.
    Buttazzo, G.: Semicontinuity,relaxation and integral representation problems in the calculus of variations, Textos e Notas 34, CMAF Universidades de Lisboa 1986.Google Scholar
  24. 81.
    Campos, L. T., J. T. Oden and N. Kikuchi: A numerical analysis of a class of contact problems with friction in elastostatic. Comp. Meth. Appl. Mech. Eng. 34/1982/, 821–845.MATHMathSciNetGoogle Scholar
  25. 82.
    Capuzzo Dolcetta, I. and M. Matzeu: Duality for implicit variational problems and numerical applications, Universitâ degli Studi, Roma, Istituto Matematico “G. Castelnuovo” 6 marzo 1980, 13–49.Google Scholar
  26. 83.
    Challen, J. M. and P. L. B. Oxley: An explanation of the different regimes of friction and wear using asperity deformation models, Wear, 53/1979/, 229–243.Google Scholar
  27. 84.
    Ciarlet, P. G. and J. Neas: Unilateral problems in nonlinear three-dimensional elasticity, ARMA 87/1985/, 319–338.ADSMATHGoogle Scholar
  28. 85.
    Clarke, F. H.: Optimization and Nonsmooth Analysis, John Wiley and Sons, New York 1983.MATHGoogle Scholar
  29. 86.
    Cocu, M.: Existence of solutions of Signorini problems with friction, Int. J. Eng. Sci., 22/1984/, 567–575.MATHMathSciNetGoogle Scholar
  30. 87.
    Cocu, M. and A. R. Radosloveseu: Regularity properties for the solutions of a class of variational inequalities, Nonlinear Analysis, Theory, Methods and Appi. 11/1987/, 221–230.Google Scholar
  31. 88.
    Curnier, A.: A theory of friction, Int. J. Solids Struct., 20/1984/, 637–647.MATHGoogle Scholar
  32. 89.
    Curnier, A. R. and R. L. Taylor: A thermomechanical formulation and solution of lubricated contacts between de-formable solids, Trans. ASME, J. Lubric. Technology 104/1982/, 109–117.Google Scholar
  33. 90.
    De Celia, B.: Theoretical analysis of dry friction in brittle and ductile materials, Wear, 116/1987)287–298.Google Scholar
  34. 91.
    Demkowicz, L.: On some results concerning the reciprocal formulation for the Signorini’s problem, Comp. and Math. with Appi., 8/1982/, 57–74.MATHMathSciNetGoogle Scholar
  35. 92.
    Demkowicz, L. and J. T. Oden: On some existence and uniqueness results in contact problems with nonlocal friction, Nonlinear Anal. Theory, Methods Applic., 6/1982) 1075–1093.MATHMathSciNetGoogle Scholar
  36. 93.
    Dowson, D.: The History of Tribology, Longmans, London 1978.Google Scholar
  37. 94.
    Dowson, D., A. Unsworth, A. F. Cooke and D. Gvozdanovic: Lubrication of Joints, In: An Introduction to the Bio-mechanics of Joints and Joint Replacement, /Eds.) D. Dowson and V. Wright /, Mechanical Engineering, London 1981, 120–145.Google Scholar
  38. 95.
    Duvaut, G.: Équilibre d’un solide élastique avec contact unilateral et frottement de Coulomb, C. R. Acad. Sci. Paris, A290/1980/, 263–265.MATHMathSciNetGoogle Scholar
  39. 96.
    Duvaut, G.: Elasticite avec frottement visqueux, C. R. Acad. Sci., Paris, A291/1980/, 511–514.MATHMathSciNetGoogle Scholar
  40. 97.
    Ekeland, I. and R. Temarrl: Convex Analysis and Variational Problems, North Holland, Amsterdam 1976.Google Scholar
  41. 98.
    Endo, T., J. T. Oden, E. B. Becker and T. Miller: A numerical analysis of contact and limit-point behavior in a class of problems of finite elastic deformation, Comp. and Structures, 18/1984/, 899–910.MATHGoogle Scholar
  42. 99.
    Felder, E. F.: Formulation thermodynamique des interactions superficielle entre deux corps, J. Méc. Théor. Appl., 4/1985/, 283–303.MATHMathSciNetGoogle Scholar
  43. 100.
    Funabashi, K. and T. Nakamura: Microscopic normal displacement of contacting bodies with tangential loads, Wear, 114/1987/, 339–354.Google Scholar
  44. 101.
    Fusciardi, A., U. Mosco, F. Scarpini and A. Schiaffino: A dual method for the numerical solution of some variational inequalities, J. Math. Anal. Applic. 40/1972/, 471–493.MATHMathSciNetGoogle Scholar
  45. 102.
    Galanov, B. A.: On nonlinear boundary equations of contact mechanics of rough surfaces, Prikl. Mat. Mekhanika, 50/1986/, 470–474.MathSciNetGoogle Scholar
  46. 103.
    Gaylord, E. W. and H. Shu: Coefficients of static friction under statically and dynamically applied loads, Wear, 4/1961/, 401–412.Google Scholar
  47. 104.
    Giltrow, J. P. and J. K. Lancaster: Friction and wear properties of carbon fibre-reinforced metals, Wear, 12/1968/, 91–105.Google Scholar
  48. 105.
    Goldstein, R. V., A. F. Zazovskij, A. A. Spektor and R. P. Fedorenko: Solutions of three-dimensional rolling problems with slip and adhesion by variational methods, Uspekhi Mekhaniki (Advances in Mechanics/, 5/1982/, 61–102. /in Russian/Google Scholar
  49. 106.
    Greenwood, J. A., K. L. Johnson and E. Matsubara: A surface roughness parameter in Hertz contact, Wear, 100/1984/, 47–57.Google Scholar
  50. 107.
    Halaunbrenner, M.: Directional effects in friction, Wear, 3/1960/, 421–425.Google Scholar
  51. 108.
    Hailing, J.: A contribution to the theory of friction, Wear, 37/1976/, 169–184.Google Scholar
  52. 109.
    Haslinger, J. and I. Hlavacek: Approximation of the Signorini problem with friction by a mixed finite element method, J. Math. Anal. Applic. 86/1982/, 99–122.MATHMathSciNetGoogle Scholar
  53. 110.
    Haslinger, J. and P. D. Panagiotopoulos: The reciprocal variational approach to the Signorini problem with friction. Approximation results, Proc. Roy. Soo. Edinb. 98A/1984/, 365–383.MATHMathSciNetGoogle Scholar
  54. 111.
    Haslinger, J. and M. Tyrdp: Approximation and numerical solution of contact problems with friction, Apl. Matematiky, 28/1983/, 55–71.MATHGoogle Scholar
  55. 112.
    Higginson, G. R.: Elastohydrodynamic lubrication in human joints, Proc. Inst. Mech. Eng., 191/1977/, 217–223.Google Scholar
  56. 113.
    Rayer, M. W., E. C. Klang and D. E. Cooper: The effects of pin elasticity clearance and friction on the stresses in a pin loaded orthotropic plate, J. Comp. Materials, 21/1987/, 190–206.ADSGoogle Scholar
  57. 114.
    Ivanov, A.P.: On well-posedness of the fundamental problem in systems with friction, Prikl. Mat. Mekh., 50/1986/, 712–716. /in Russian/Google Scholar
  58. 115.
    Jarusek, J.: Contact problems with bounded friction, Coercive case, Czech. Math. J., 33(1983/, 237–261; Semiooercive case, ibid, 34 (1984/, 619–629.MathSciNetGoogle Scholar
  59. 116.
    Kalker, J. J.: Mathematical models of friction for contact problems in elasticity, Wear, 113/1986/, 61–77.Google Scholar
  60. 117.
    Kalker, J. J.: The principle of virtual work and its dual for contact problems, Ing. -Archiv., 56/1986/, 453–467.MATHGoogle Scholar
  61. 118.
    Kanatani, K. -I.: A theory of contact force distribution in grannular materials, Powder Technology, 28/1981/, 167–172.Google Scholar
  62. 119.
    Kayaba, T., K. Kato and K. Hokkirigawa: Theoretical analysis of the plastic yielding of a hard asperity sliding on a soft flat surface, Wear, 87/1983/, 151–161.Google Scholar
  63. 120.
    Kikuchi, N.: A Class of Signorini’s Problems by Reciprocal Variational Inequalities, In: Computational Techniques for Interface Problems, AMD, Vol. 30 /Eds K. C. Park and D. K. Gartling /, Am. Soc. Meoh. Eng., New York 1978, 135–153.Google Scholar
  64. 121.
    Kikuchi,N.: Beam bending problems on a Pasternak foundation using reciprocal variational inequalities, Quart. Appl. Math., 37/1980/, 91–108.MathSciNetGoogle Scholar
  65. 122.
    Kikuchi, N.: Friction Contact Problems by Using Penalty Regularization Methods, In: Contact Mechanics and Wear of Rail Wheel Systems, /Eds J. Kolousek, R. V. Dukkipati and G. M. L. Gladwell/, University of Waterloo Press, 1983, 37–59.Google Scholar
  66. 123.
    Kikuchi, N. and J. T. Oden: Contact Problems in Elasticity, SIAM, Philadelphia 1986.Google Scholar
  67. 124.
    Kishida, H. and M. Uesugi: Tests of the interface between sand and steel in the simple shear apparatus, Géotechnique, 37/1987/, 45–52.Google Scholar
  68. 125.
    Klarbring, A.: Contact problems in linear elasticity. Friction laws and mathematical programming applications, Linköping Studies in Science and Technology, Dissertations No 133, 1985, Linkoping University, Sweden.Google Scholar
  69. 126.
    Klarbring, A.: The Influence of Slip Hardening and Interface Compliance on Contact Stress Distributions. A Mathematical Programming Approach, In: Mechanics of Material Interfaces /Eds. A.P.S. Selvadurai and G.Z. Voyiadjis /, Elsevier Science Publishers, Amsterdam 1986, 43–59.Google Scholar
  70. 127.
    Klarbring, A.: General contact boundary conditions and the analysis of frictional systems, Int. J. Solids Structures, 22/1986/, 1377–1398.MATHMathSciNetGoogle Scholar
  71. 128.
    Klarbring, A.: A mathematical programming approach to three dimensional contact problems with friction, Comp. Meth. Appl. Mech. Eng., 58/1986/, 175–200.MATHMathSciNetGoogle Scholar
  72. 129.
    Kleiber, M. and B. Raniecki: Elastic-Plastic Materials at Finite Strains, In: Plasticity Today. Modelling, Methods and Applications /Eds A. Sawczuk and G. Bianchi) Elsevier Applied Science Publishers, London-New York 1985, 3–46.Google Scholar
  73. 130.
    Kravchuk, A. S.: A contribution to the theory of contact problems with taking into account of friction on the surface of contact, Prikl. Mat. Mekh., 44/1980) 122–129 /in Russian/MathSciNetGoogle Scholar
  74. 131.
    Laurent, P. J.: Approximation et Optimisation, Herrmann, Paris 1972.MATHGoogle Scholar
  75. 132.
    Leszek, W. and W. Zwierzycki: Modern interpretation of friction and wear notions — Part I: General description of solid friction, Trybologia, 18/1987/, 4–7 (in Polish)Google Scholar
  76. 133.
    Licht, C.: Un problème d’élasticité avec frottement visqueux non linéaire, J. Mec. Théor. Appl. 4/1985)15–26.Google Scholar
  77. 134.
    Ling, F. F. and S. L. Pu: Probable interface temperatures of solids in sliding contact, Wear, 7/1964/, 23–34.Google Scholar
  78. 135.
    Ludema, K. C. and D. Tabor: The friction and visco-elastic properties of polymeric solids, Wear, 9/1966/, 329–348.Google Scholar
  79. 136.
    Mackie, A. G.: Complementary variational inequalities, IMA J. Appl. Math., 36/1986/, 293–305.MathSciNetGoogle Scholar
  80. 137.
    Madakson, P. B.: The frictional behaviour of materials, Wear, 87/1983/, 191–206.Google Scholar
  81. 138.
    Martins, J. A. C. and J. T. Oden: A numerical analysis of a class of problems in elastodynamics with friction, Comp. Meth. Appl. Mech. Eng., 40/1983/, 327–360.MATHMathSciNetGoogle Scholar
  82. 139.
    Michalowski, R. and Z. Mróz: Associated and non-associated sliding rules in contact friction problems, Arch. Mech. Stos., 39/1981/, 259–276.Google Scholar
  83. 140.
    Moreau, J. J.: La Convexité en Statique, In: Analyse Convexe et ses Applications, Eds. J. Aubin, Lecture Notes in Economics and Mathematical Systems, Vol. 102, Springer-Verlag, Berlin 1974, 141–167.Google Scholar
  84. 141.
    Moreau, J. J.: Un formulation du contact à frottement sec; application au calcul numérique, C. R. Acad. Sci., Paris, Série II, 302/1986/, 799–801.MATHMathSciNetGoogle Scholar
  85. 142.
    Mosco, U.: Dual variational inequalities, J. Math. Anal. Appl., 40/1972/, 202–206.MATHMathSciNetGoogle Scholar
  86. 143.
    Mosco, U.: Implicit Variational Problems and Quasi-Variational Inequalities, In: Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math., Vol. 543, Springer-Verlag, Berlin 1976, 83–156.Google Scholar
  87. 144.
    Mow, V. C. and A. F. Mak: Lubrication of Diarthroidal Joints, In: The Bioengineering Handbook /Eds R. Skalak and S. Chein /, McGraw Hill Publishers, New York 1984.Google Scholar
  88. 145.
    Necas, J., J. Jarusek and J. Haslinger: On the solution of the variational inequality to the Signorini problem with small friction, Boll. Unione Mat. Ital., 17/1980/, 796–811.MATHMathSciNetGoogle Scholar
  89. 146.
    Nowacki, W.: Theory of Elasticity, Paistwowe Wydawnic-two Naukowe, Warszawa 1970 (in Polish).Google Scholar
  90. 147.
    Oden, J. T. and J. A. C. Martins: Model of computational methods for dynamic friction phenomena, Comp. Meth. Appl. Mech. Eng., 52/1985/, 527–634.MATHMathSciNetGoogle Scholar
  91. 148.
    Oden, J. T. and E. B. Pires: Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity, Trans. ASME, J. Appl. Mech., 50/1983/, 67–76.ADSMATHMathSciNetGoogle Scholar
  92. 149.
    Oden, J. T. and E. B. Pires: Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws, Comp. Struct., 19/1984/, 137–147.Google Scholar
  93. 150.
    Oden, J. T., E. B. Becker, T. L. Lin and L. Demkowioz: Formulation and Finite Element Analysis of a General Class of Rolling Contact Problems with Finite Elastic Deformations, In: Mathematics of Finite Elements with Applications, Eds. J. R. Whiteman, Academic Press 1985.Google Scholar
  94. 151.
    Pires, E. B. and J. T. Oden: Analysis of contact problems with friction under oscillating loads, Comp. Meth. Appl. Mech. Eng., 39/1983/, 337–362.MATHMathSciNetGoogle Scholar
  95. 152.
    Pozharytskii, G. K.: Extension of Gauss principle to systems with dry friction, Prikl. Mat. Mekh., 25/1961/, 391–406. /in Russian/Google Scholar
  96. 153.
    Rabier, P., J. A. C. Martins, J. T. Oden and L. Campos: Existence and local uniquenes of solutions to contact problems in elasticity with nonlinear friction laws, Int. J. Eng. Sci., 24/1986/, 1755–1768.MATHMathSciNetGoogle Scholar
  97. 154.
    Raniecki, B.: Thermodynamic Aspects of Cyolicl Monotone Plasticity, In: The Constitutive Law in Thermoplasticity, Eds. Th. Lehmann, Springer-Verlag, Wien 1984, 251–321.Google Scholar
  98. 155.
    Richardson, R. S., Nolle H.: Surface friction under time-dependent loads, Wear, 37/1976/, 87–101.Google Scholar
  99. 156.
    Rigney, D. A. and J. P. Hirth: Plastic deformation and sliding friction of metals, Wear, 53/1979/, 345–370.Google Scholar
  100. 157.
    Rockefeller, R. T.: Convex Analysis, Princeton University Press, Princeton 1970.Google Scholar
  101. 158.
    Rockefeller, R. T.: Integral Functionals, Normal Into-grands and Measurable Selections, In: Nonlinear Operators and Calculus of Variations, Lecture Notes in Mathematics, Vol. 543, Springer-Varlag, Berlin 1976, 157–207Google Scholar
  102. 159.
    Rothert, H., H. Idelberger, W. Jacobi and L. Niemann: On geometrically nonlinear contact problems with friction, Comp. Meth. Appl. Meeh. Eng., 51/1985/, 139–155.MATHMathSciNetGoogle Scholar
  103. 160.
    Simonov, I. V.: On behaviour of solutions of dynamical problems in the vicinity of boundary of contact zone of elastic bodies, Prikl. Mat. Mekh., 51/1987/, 85–94. /in Russian/MathSciNetGoogle Scholar
  104. 161.
    Simons, J. W. and P. G. Bergan: A finite element formulation of three dimensional contact problems with slip and friction, Comp. Mech., 1/1986/, 153–164.ADSMATHGoogle Scholar
  105. 162.
    Spector, A. A.: Variational methods in three dimensional problems of transient interaction of elastic bodies with friction, Prikl. Math. Mekh. 51/1987) 76–83 /in Russian/.MathSciNetGoogle Scholar
  106. 163.
    Suh, N. P. and H. -C. Sin: The genesis of friction,Wear, 69/1981/, 91–114.Google Scholar
  107. 164.
    Tabor, D.: Friction - the present state of our understanding, Trans. ASME, J. Lubr. Techn., 103/1981)169–179.Google Scholar
  108. 165.
    Tabor, D.: Friction and Wear–Development over the Last Fifty Years, In: Tribology–Friction, Lubrioation and Wear, Fifty Years On, Vol. ’, Int. Conf. 1–3 July 1987, Proc. of the Institution of Mechanical Engineers, Mechanical Engineering Publications Ltd, London 1987, 157–172.Google Scholar
  109. 166.
    Tabor, D. and D. E. Wynne Williams: The effect of orientation of the friction of polyetrafluoroethylene, Wear, 4/1961/, 391–400.Google Scholar
  110. 167.
    Telega, J. J.: Limit analysis theorems in the case of Signorini’s boundary conditions and friction, Arch. Mech., 37/1985/, 549–562.MATHMathSciNetGoogle Scholar
  111. 168.
    Telega, J. J.: Variational Inequalities in Contact Problems, in: Mechanics of Contact of Solid Bodies, Ossolineum, in press (in Polish).Google Scholar
  112. 169.
    Trip,J. H., L. G. Houpert, E. Ioannides and A. A. Lubrecht: Dry and Lubricated Contact of Rough Surfaces, in: Tribology-Friction, Lubrication and Wear. Fifty Years On, Vol. I, Int. Conf.,1–3 July, Proc. of the Institution ofGoogle Scholar
  113. 170.
    Uesugi, M. and H. Kishida: Frictional resistance at yield between dry sand and mild steel, Soil and Foundations, 26/1986/, 139–149.Google Scholar
  114. 171.
    Vovkushevskii, A. V.: On variational formulation of the Signorini’s problem with friction, Mekh. Tv. Tela, 6/1984/, 73–78.MathSciNetGoogle Scholar
  115. 172.
    Woo, K. L. and T. R. Thomas: Contact of rough surfaces: a review of experimental work, Wear, 58/1980)331–340.Google Scholar
  116. 173.
    Zmitrowicz,A.: A theoretical model of anisotropie dry friction, Wear, 73/1981)9–39.Google Scholar
  117. 174.
    Zmitrowicz, A: A thermodynamical model of contact friction and wear: I. Governing equations, II. Constitutive equations for materials and linearized theories, III. Constitutive equations for friction, wear and frictional heat, Wear 114(1987(,135–168, 169–197, 199–221.Google Scholar

Chapter 3

  1. 175.
    Anzellotti, G. and S. Luckhaus: Dynamical evolution of elasto-perfectly plastic bodies, Appl. Math. and Optim., 15/1987/, 121–140.MATHMathSciNetGoogle Scholar
  2. 176.
    Attouch, H. and R. J. -B. Wets: A convergence theory for saddle functionals, Trans. Amer. Math. Soc., 1, 280 (1983).MathSciNetGoogle Scholar
  3. 177.
    Arutyunyan, N. H. and V. B. Kolmanovskii: Theory of Creep of Nonhomogeneous Bodies, Nauka, Moskva 1983 (in Russ ian).Google Scholar
  4. 178.
    Arutyunyan, N. H. and B. A. Shoykhet: Asymptotic behaviour of solutions of boundary value problem of the theory of creep of nonhomogeneous ageing bodies with unilateral constraints, Mekh. Tv. Tela, 3/1981/, 31–48 /in Russian/.Google Scholar
  5. 179.
    Bogomolny, A.: Variational formulation of the roller contact problem, Math. Meth. in the Appl. Sci., 6/1984/, 84–96.ADSMATHMathSciNetGoogle Scholar
  6. 180.
    Bogomolnii,A., G. Eskin and Zuchowizkii, Numerical solution of the stamp problem, Comp. Meth. Appl. Mech. Eng., 15/1978/, 149–159.Google Scholar
  7. 181.
    Bouc, R., G. Geymonat, M. Jean and B. Nayroles: Hilbertian Unilateral Problems in Viscoelasticity, In: Applications of Methods of Functional Analysis to Problems in Mechanics, /Eds. P. Germain and B. Nayroles/, Lect. Notes in Mathematics, vol. 503, Springer-Verlag, Berlin 1975, 219–234.Google Scholar
  8. 182.
    Bouc, R., G. Geymonat, M. Jean and B. Nayroles: Cauchy and periodic unilateral problems for aging linear viscoelastic materials, J. Math. Anal. Appl., 61/1977/, 7–39.MATHMathSciNetGoogle Scholar
  9. 183.
    Boucher, M.: Signorini’s Problem in Viscoelasticity, In: The Mechanics of the Contact Between Deformable Bodies /Eds. A. D. de Pater and J. J. Kalker /, Delft University Press 1975.Google Scholar
  10. 184.
    Christiansen, E.: Limit analysis in plasticity as a mathematical programming problem, Calcolo, 17/1980/, 41–65.MATHMathSciNetGoogle Scholar
  11. 185.
    Christiansen, E.: Limit analysis for plastic plates, SIAM J. Math. Anal., 11/1980/, 514–522.MATHMathSciNetGoogle Scholar
  12. 186.
    Christiansen,E.: Examples of collapse solutions in limit analysis, Utilitas Mathematical 22/1982)77–102.Google Scholar
  13. 187.
    Christiansen, E.: On the collapse solution in limit analysis, ARMA, 91/1986/, 119–135.ADSMathSciNetGoogle Scholar
  14. 188.
    Demengel, F.: Problèmes variationneles en plasticité parfaite des plaques, Numer. Funct. Anai. and Optim., 6/1983/, 73–119.MATHMathSciNetGoogle Scholar
  15. 189.
    Do, C.: On the Dynamic Deformation of a Bar Against an Obstacle, In: Variational Methods in the Mechanics of Solids, Eds. S. Nemat-Nasser /, Pergamon Press 1980, 237–241.Google Scholar
  16. 190.
    Do, C., Raupp, A. and R. A. Feijóo: The dynamics of a bar in the presence of obstacles, Bol. Soc. Bras. Mat., 11/1980)55–78.Google Scholar
  17. 191.
    Duvaut, G.: Étude d’un problème dynamique en élastoviscoplasticité et plasticité parfaite avec conditions de frottement â la frontière, Sc. Techn. Armement, 47/1973/, 219–227.Google Scholar
  18. 192.
    Duvaut, G.: Problèmes de Contact Entre Corps Solides Deformables, In: Applications of Methods of Functional Analysis to Problemes in Mechanics, /Eds P. Germain and B. Nayroles/, Lect. Notes in Mathematics, Vol. 503, Springer-Verlag, Berlin 1976, 317–327.Google Scholar
  19. 193.
    Drozd, M. S., M. M. Mamlich and Yu. I. Sidyakin: Engineering Calculations of Elastic-Plastic Contact Deformation, Mashinostroenye, Moskva 1986 /in Russian/.Google Scholar
  20. 194.
    Endahl, N.: Elastoplastic identation problems, Linköping Studies in Science and Technology Dissertations, No 128, Linköping University 1985.Google Scholar
  21. 195.
    Eskin, G.: Boundary Value Problems for Elliptic Pseudodifferential Equations, Transl. of Math. Monographs, AMS, vol. 52, 1981.Google Scholar
  22. 196.
    Fredriksson, B.: Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems, Comp. Structures, 6/1976/, 281–290.MATHGoogle Scholar
  23. 197.
    Fredriksson, B. B.: Elastic Contact Problems in Fracture Mechanics, in: Fracture 1977, vol. 3, ICF 4, Waterloo, Canada, June 19–24, 1977, 427–435.Google Scholar
  24. 198.
    Frémond, M.: Conditions unilatérales et non linéarité en calcul a la rupture, Mat. Aplic. Comp., 2/1983/, 237–256.MATHGoogle Scholar
  25. 199.
    Gawgoki, A.: Elastic-plastic beams and frames with unilateral boundary conditions, J. Struct. Mech., 14/1986/, 53–76.Google Scholar
  26. 200.
    Haslinger, J. and Hlavâcek I.: Contact between elastic perfectly plastic bodies, Apl. Matematiky, 27/1982/, 27–45.MATHGoogle Scholar
  27. 201.
    Hill, R.: Constitutive dual potentials in classical plasticity, J. Mechal Phys. Solids, 35/1987/, 23–33.ADSMATHGoogle Scholar
  28. 202.
    Hludnev, A. M.: On solution of boundary value problems for generalized equations of creep with a unilateral condition at the boundary, Prikl. Mat. Mekh., 48/1984/, 44–49.Google Scholar
  29. 203.
    Hunter, S. C.: The rolling contact of a rigid cylinder with a viscoelastic half space, Trans. ASME, J. Appl. Mech., 28/1961/, 611–617.ADSMATHGoogle Scholar
  30. 204.
    Jean, M. and B. Nayroles: Signorini Problem in Linear Viscoelasticity, In: Duality and Complementarity in Mechanics of Solids /Eds. A. Borkowski /, Ossolineum, Wroclaw, 1979, 419–481.Google Scholar
  31. 205.
    Johnson, G.: An elasto-plastic contact problem, RAIRO Anal. Numer., 12/1978/, 59–74.MATHGoogle Scholar
  32. 206.
    Johnson, K. L.: Aspects of Contact Mechanics, In: Tribology — Friction, Lubrication and Wear, Fifty Years On, Vol. II, Int. Conference, 1–3 July, London, Published for the Institution of Mechanical Engineers by Mechanical Engineering Publications Ltd, London, 919932.Google Scholar
  33. 207.
    Joo, J. W. and B. M. Kwak: Analysis and applications of elasto-plastic contact problems considering large deformation, Comp. Struct., 24/1984/, 953–961.Google Scholar
  34. 208.
    Kikuchi, N. and K. Skalski: An elasto-plastic rigid punch problem using variational inequalities, Arch. Mech., 33/1981/, 865–877.MATHMathSciNetGoogle Scholar
  35. 209.
    Kohn, R. and R. Temam: Dual spaces of stresses and strains with applications to Hencky plasticity, Appl. Math. Optim., 10/1983/, 1–35.MATHMathSciNetGoogle Scholar
  36. 210.
    König, J. A.: Shakedown of Elastic-Plastic Structures, Panstwowe Wydawnictwo Naukowe, Warszawa, Elsevier, Amsterdam 1987.Google Scholar
  37. 211.
    Kravtchuk, A. S.: On Hertz problem for linear and nonlinear elastic bodies, Prikl. Mat. Mekh., 41/1977/, 329–337 /in Russian/“MathSciNetGoogle Scholar
  38. 212.
    Kravchuk, A. S.: Formulation of contact problem for several deformable bodies as a nonlinear programming problem, Prikl. Mat. Mekh., 42/1978/, 466–474 /in Russian/.MathSciNetGoogle Scholar
  39. 213.
    Kravchuk, A. S. and V. A. Vasil’ev: Numerical methods of solving the contact problem for linear and nonlinear bounded elastic bodies, Prikl. Mekh., 16/1980/, 9–15, /in Russian/.MathSciNetGoogle Scholar
  40. 214.
    Kuz’menko, V. I.: On a variational approach in the thecry of contact problems for nonlinear layered elastic bodies, Prikl. Mat. Mekh., 43/1979/, 893–901 /in Russian/MathSciNetGoogle Scholar
  41. 215.
    Kuz’menko, V. I.: On contact problems of the theory of plasticity under complex loading, Prikl. Mat. Mekh., 48/1984/, 473–481 /in Russian/.MathSciNetGoogle Scholar
  42. 216.
    Kuz’menko, Y. I.: On unloading process in the case of contact interaction, Prikl. Mat. Mekh., 49/1985/, 445–452 /in Russian/.MathSciNetGoogle Scholar
  43. 217.
    Kuz’menko, V. I.: Contact problems for an elastic-plastio strip under complex loading, Mekh. Tv. Tela, 6/1985) 128–135 /in Russian/.Google Scholar
  44. 218.
    Kuz’menko, V. I.: On inverse contact problems of the theory of plasticity, Prikl. Mat. Mekh., 50/1986/, 475–482 /in Russian/.MathSciNetGoogle Scholar
  45. 219.
    Kuz’menko, V. I.: Contact problems of plasticity with taking account of contact friction, Trenye i Iznos, 8/1987/, 45–52 /in Russian/.Google Scholar
  46. 220.
    Lene, F. and G. Loppin: Sur quelques problèmes de contact entre corps solides deformables, Colloque Franco-Brésilien sur les Méthodes Numériques de l’Ingénieur, Août 1976.Google Scholar
  47. 221.
    Liolios, A. A.: Upper and lower solution estimates in unilateral viscoelastodynamics, Acta Mechanica, 66/1987/, 275–278.MATHMathSciNetGoogle Scholar
  48. 222.
    L’vov, G. I.: Variational formulation of the contact problem for linear elastic and physically nonlinear shallow shells, Prikl. Mat. Mekh., 46/1982/, 841–846, /in Russian/.MathSciNetGoogle Scholar
  49. 223.
    L’vov, G. I.: Contact problems of creep of shallow shells, Mekh. Tv. Tela, 5 ( 1984, 116–124, /in Russian/.Google Scholar
  50. 224.
    Maier,G. and F. Andreuzzi: Elastic and elasto-plastic analysis of submarine pipelines as unilateral contact problems, Comp. Struct., 8/1978/, 421–431.MATHGoogle Scholar
  51. 225.
    Maier, G. and J. Munno: Mathematical programming applications to engineering plastic analysis, Appl. Meeh. Revs., 35/1982/, 1631–1643.Google Scholar
  52. 226.
    Maier, G., F. Andreuzzi, F. Giannessi, L. Jurina and F. Taddei: Unilateral contact, elastoplasticity and complementarity with reference to offshore pipeline design, Comp. Meth. Appl. Mech. Eng., 17/1979/, 465–495.Google Scholar
  53. 227.
    McLinden, L.: A minimax theorem, preprint, Department of Mathematics University of Illinois at Urbana — Champaign, 1979.Google Scholar
  54. 228.
    Moreau, J. J.: On Unilateral Constraints, Friction and Plasticity, In: New Variational Techniques in Mathematical Physics /Eds. G. Capriz and G. Stampacchia /, Edizioni Cremonese, Roma 1974, 173–322.Google Scholar
  55. 229.
    Nagaraj, H. S.: Elastoplastic contact of bodies with friction under normal and tangential loading, Trans. ASME, J. Tribology, 106/1984/, 519–526.Google Scholar
  56. 230.
    Naumann, J.: Periodic solutions to certain evolution inequalities, Czech. Math. J., 27/1977/, 424–433.MathSciNetGoogle Scholar
  57. 231.
    Necas, J. and I. Hlavâcek: Solution of Signorini’s contact problem in the deformation theory of plasticity by secant modules method, Apl. Matematiky, 28/1983/, 199–214.MATHGoogle Scholar
  58. 232.
    Nguyen, Q. S.: Uniqueness, Stability and Bifurcation of Standard Systems, In: Plasticity Today, Modelling, Methods and Applications /Eds. A. Sawczuk and G. Biarithi /, Elsevier Applied Science Publishers, London and New York 1985, 399–412.Google Scholar
  59. 233.
    Nowacki, W.: Theory of Creep, Arkady, Warszawa 1963 lin Polish.Google Scholar
  60. 234.
    Oden, J. T. and Lin T. L.: On the general rolling contact problem for finite deformations of a viscoelastic cylinder, Comp. Meth. Appl. Mech. Eng., 57/1986/, 297–367.MATHMathSciNetGoogle Scholar
  61. 235.
    Oden, J. T., E. B. Becker, T. L. Lin and K. T. Hsieh: Numerical Analysis of Some Problems Related to the Mechanics of Pneumatic Tires: Finite Deformation Rolling Contact of a Viscoelastic Cylinder and Finite Deformation of Cord-Reinforced Rubber Composites, In: Research in Structures and Dynamics — 1984, NASA Conference Publication 2335, Symposium held of Washington, D. C., October 22–25, 1984, 297–307.Google Scholar
  62. 236.
    Panek, C. and J. J. Kalker: Three-dimensional contact of rigid roller traversing a viscoelastic half space, J. Inst. Maths Applies, 26/1980/, 299–313.MATHMathSciNetGoogle Scholar
  63. 237.
    Paymushin, B. N. and V. A. Firsov: Equation of nonlinear theory of contact interaction of thin shells with de-formable fundations of variable thickness, Mekh. Tv. Tela, 3/1985/, 119–128 /in Russian/.Google Scholar
  64. 238.
    Ponter, A. R. S., A. D. Hearle and K. L. Johnson: Application of the kinematical shakedown theorem to rolling and sliding point contacts, J. Mech. Phys. Solids, 33/1985/, 339–362.ADSMATHMathSciNetGoogle Scholar
  65. 239.
    Raous, M.: On Two Variational Inequalities Arising from a Periodic Viscoelastic Unilateral Problem, In: Variational Inequalities and Complementarity Problems. Theory and Applications. Eds, R. W. Cottle, F. Giannesi and J. L. Lions /, John Wiley and Sons, Chichester — New York 1980, 285–302.Google Scholar
  66. 240.
    Raous, M.: Comportement d’un solide fissuré sous charges alternatives en visooélasticié non linéaire avec ecrouissage, J. Méc. Théor. Appl., Numéro spécial, 1982, 125–146.Google Scholar
  67. 241.
    Raous, M.: Contacts Unilatéraux avec Frottement en Viscoélasticite, In: Unilateral Problems in Structural Analysis /Eds. G. Del Piero and F. Maoeri /, Springer-Verlag, Wien-New York 1985, 269–297.Google Scholar
  68. 242.
    Ronda, J., R. Bogacz and M. Brzozowski: Infinitesimal and large strain in rolling contact problems, Ing. Archiv., 56/1986/, 241–253.MATHGoogle Scholar
  69. 243.
    Ronda, J., O. Mahrenholtz, R. Bogacz and M. Brzozowski: The rolling contact problem for an elastic-plastic strip and a rigid roller, Mech. Res. Comm., 13/1986/, 119–132.MATHGoogle Scholar
  70. 244.
    Rydholm, G.: On inequalities and shakedown in contact problems, Linköping Studies in Science and Technology, Dissertations No 61, Linköping University, Institute of Technology, Linköping 1981.Google Scholar
  71. 245.
    Rydholm, G. and B. Fredriksson: Shakedown Analysis in Rolling Contact Problems, In: Conf. on Mechansms of Deformation and Fracture, Sept. 20–22, 1878, Lule, SwedenGoogle Scholar
  72. 246.
    Seregin, G. A.: Variational problems and evolution variational inequalities in non-reflexive spaces with applications to problems of geometry and plasticity, Izv. Akad. Nauk SSSR, Ser. Mat., 48/1984/, 420–445 /in Russian/.MATHMathSciNetGoogle Scholar
  73. 247.
    Sim, J. C., P. Wriggers, K. H. Sehweizerhof and R. L. Taylor: Finite deformation post-buckling analysis involving inelasticity and contact constraints, Int. J. Numer. Meth. Eng., 23/1986/, 779–800.Google Scholar
  74. 248.
    Taylor, L. M. and E. B. Becker: Some computational aspects of large deformation, rate-dependent plasticity problems, Comp. Meth. Appl. Mech. Eng., 41/1983/, 251–277.MATHGoogle Scholar
  75. 249.
    Telega, J. J.: Variational Methods and Extremum Principles for Some Non-classical Problems of Plasticity: Unilateral Boundary Conditions, Friction, Discontinuities, In: Variational Method in Engineering, Eds. C. A. Brebbia, Springer-Verlag, Berlin 1985,(8–27),(8–36).Google Scholar
  76. 250.
    Temam, R.: Mathematical Problems in Plasticity, Gauthier-Villars, Bordas, Paris 1985.Google Scholar
  77. 251.
    Temam, R. and G. Strang: Duality and relaxation in the variational problems of plasticity, J. Méc., 19/1980/, 493–527.MATHMathSciNetGoogle Scholar

Chapter 4

  1. 252.
    Attouch, H.: Variational Convergence for Functions and Operators, Pitman, Boston-London-Melbourne 1984.MATHGoogle Scholar
  2. 253.
    Attouch, H. and F. Murat: Homogenization of fissured elastic materials, Publications AVAMAC, No 85–03, Université de Perpignan, 1985.Google Scholar
  3. 254.
    Bakhvalov, N. S. and G. P. Panasenko: Averaging of Processes in Periodic Media, Nauka, Moskva 1984, /in Russian/.MATHGoogle Scholar
  4. 255.
    Bensoussan, A., J. -L. Lions and G. Papanicolaou: Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam 1978.MATHGoogle Scholar
  5. 256.
    Bergman, D., J. L. Lions, G. Papanicolaou, F. Murat, L. Tartar and E. Sanchez-Palencia: Les Méthodes de l’Homogénéisation: Théorie et Applications en Physique, Editions Eyrolles, Paris 1985.Google Scholar
  6. 257.
    Brézis, H.: Operateur Maximaux Monotones, North-Holland Publishing Company, Amsterdam 1973.Google Scholar
  7. 258.
    Brézis, H.: Analyse Fonctionnelle, Masson, Paris 1983.MATHGoogle Scholar
  8. 259.
    Bruch, J. C.: Coupled variational inequalities for flow from a non-symmetric ditch, Contemporary Mathematics, 11/1982/, 49–70.MATHGoogle Scholar
  9. 260.
    Burrige, R., S. Childress and G. Papanicolaou /Eds): Macroscopic Properties of Disordered Media, Lecture Notes in Physics, Vol. 154, Springer-Verlag, Berlin 1982.Google Scholar
  10. 261.
    Ciarlet, P. G. and E. Sanchez-Palencia /Eds):Applications of Multiple Scaling in Mechanics, Masson, Paris 1987.MATHGoogle Scholar
  11. 262.
    Eriksen, J. L., D. Kinderlehrer, R. Kohn and J. L. Lions /Eds): Homogenization and Effective Moduli of Materials and Media, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo 1986.Google Scholar
  12. 263.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Pitman, Boston-London-Melbourne 1985.MATHGoogle Scholar
  13. 264.
    Karlsson, T.: Wiener’s criterion and obstacles problems for vector valued functions, Arkiv f. Mat., 23/1986/, 315–325.MathSciNetGoogle Scholar
  14. 265.
    Leguillon, D. and E. Sanchez-Palencia: On the behaviour of a cracked elastic body with (or without) friction, J. Méc. Théor. Appliquée, 1/1982/, 195–209.Google Scholar
  15. 266.
    Lené, F.: Contribution â l’étude des matériaux composites et de leur endommagement, These de Doctorat d’Etat, Université Pierre et Marie Curie, 1984.Google Scholar
  16. 267.
    Lewiírski, T. and J. J. Telega: On homogenization of fissured elastic plates, Mech. Res. Comm., 12/1985/, 271–281.Google Scholar
  17. 268.
    Lewinski, T. and J. J. Telega: Asymptotic method of homogenization of fissured elastic plates, J. Elasticity, 1987.Google Scholar
  18. 269.
    Lewiiski, T. and J. J. Telega: Homogenization of fissured Reissner-like plates, Part 1. Method of two-scale asymptotic expansion; Part III. Some particular oases and illustrative example, Arch. Mech., 40/1988/, 277.Google Scholar
  19. 270.
    Lions, J. L.: Problèmes aux Limites dans les Equations aux Dérivées Partielles, Les Presses d l’Université de Montréal, 1962.Google Scholar
  20. 271.
    Lurie, K. and A. W. Cherkaiev: Effective characteristics of composites and optimum structural design, Uspekhi Mekhaniki (Advances in Mechanics/, 9/1986/, 3–81 /in Russian/.Google Scholar
  21. 272.
    Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag 1980.Google Scholar
  22. 273.
    Sanchez-Palencia, E.: Homogenization Method for the Study of Composite Media, In: Asymptotic Analysis, Lecture Notes in Mathematics, Vol. 985, Springer-Vorlag, Berlin 1983, 192–214.Google Scholar
  23. 274.
    Sanchez-Palencia, E. and A. Zaoni /Eds): Homogenization Techniques for Composite Media, Lecture Notes in Physics, 272, Springer-Verlag 1987.Google Scholar
  24. 275.
    Suquet, P. M.: Approach by Homogenization of Some Linear and Nonlinear Problems in Solid Mechanics, In: Plastic Behaviour of Anisotropie Solids (Ed. J.-P. Boehler/, Editions du CNRS, Paris 1985, 77–117.Google Scholar
  25. 276.
    Telega, J. J.: Homogenization of fissured solids in the presence of unilateral conditions and friction, in preparation.Google Scholar
  26. 277.
    Telega, J. J. and T. Lewinski: Homogenization of fissured Reissner-like plates. Part 2. Convergence, Arch. Mech. 40/1988/, 269.Google Scholar


  1. 278.
    Barros-Neto, J.: Inhomogeneous boundary value problems in a half space, Annali della Scuola Normale Superiore di Pisa, Serie III, 19/1965/, 331–365.MATHMathSciNetGoogle Scholar
  2. 279.
    M.: Problème de Sieorini dans l’hypothèse d’un support déformable, These 3-ème cycle, Université de Paris V I, 1973.Google Scholar
  3. 280.
    Bouchitté, Gt Convergence et relaxation de fonctionnelles du calcul des variations a. croissance linéaire. Application a l’homogénéisation en plasticité, Publications AVAMAC, Université de Perpignan 85–10.Google Scholar
  4. 281.
    Bouchitté, G.: Representation integrale de fonctionnelles convexes sur un espace de mesures - I, Publications AVAMAC, Universite de Perpignan, 86–11.Google Scholar
  5. 282.
    Castaing, C. and Valadier M.: Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin-Heidelberg-New York 1977.MATHGoogle Scholar
  6. 283.
    Haraux, A.: Nonlinear Evolution Equations — Global Behavior of Solutions, Springer-Verlag, Berlin-Heidelberg-New York 1981.MATHGoogle Scholar
  7. 284.
    Bouchitté, G.: Homogénéisation sur BV(Ω) de fonction-nelles intégrales à croissance linéaire. Application A un problème d’analyse limite en plasticite, C. R. Acad. SceParis, Série I, 301/1985/, 785–788.MATHGoogle Scholar
  8. 285.
    Ogden, R. W.: Non-Linear Elastic Deformations, Ellis Horwood Limited Publishers, Chichester 1984.Google Scholar
  9. 286.
    Dal Maso, G. and L. Modica: A general theory of variational functionals, In: Topics in Functional Analysis, Scuola Normale Superiore di Pisa, Pisa 1982, 149–221.Google Scholar
  10. 287.
    Klarbring,A.,Mikeliç A. and Shillor M.: On friction problems with normal compliance,Nonlinear Anal. Theory Meth. Appl., submitted.Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • J. J. Telega
    • 1
  1. 1.Polish Academy of SciencesWarsawPoland

Personalised recommendations