Advertisement

Discontinuities and Plasticity

  • P. M. Suquet
Part of the International Centre for Mechanical Sciences book series (CISM, volume 302)

Abstract

The guide line of these lectures is that Plasticity and spatial discontinuities are two companion phenomena:

Keywords

Variational Inequality Limit Load Limited Strength Lower Semi Continuity Plasticity Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TEMAM R., STRANG, G. “Duality and relaxation in Plasticity”, Jouinal de Mécanique, 19, 1980, p. 493–527.MATHMathSciNetGoogle Scholar
  2. 2.
    TEMAM R.: Pioblémes mathématiqies en plasticité, Gauthier-Villars, Paris, 1983.Google Scholar
  3. 3.
    ATTOUCH H.: Valiational conveigence jon junctions and opeiatons, Pitman, London, 1984.Google Scholar
  4. 4.
    BOUCHITTE G. “Calcul des variations en cadre non réflexif…”, Thesis. University of Perpignan. France. 1987.Google Scholar
  5. 5.
    SALENCON J.: Calcul à la iuptuie et analyse limite, Presses ENPC, Paris, 1983.Google Scholar
  6. 6.
    NAYROLES B. “Essai de théorie fonctionnelle des structures rigi- des plastiques parfaites”, J. de Mécanique, 9, 1970, 491–506.MATHMathSciNetGoogle Scholar
  7. 7.
    ROCKAFELLAR R.T.: Convex Analysis. Princeton Univ. Press. Princeton. 1970.MATHGoogle Scholar
  8. 8.
    EKELAND I., TEMAM R.: Convex Analysis and Valiational Problems, North Holland, Amsterdam, 1976.Google Scholar
  9. 9.
    PANAGIOTOPOULOS P.D.: Inequality pioblems in Mechanics and Applications. Birkhaüser. Boston. 1985.CrossRefGoogle Scholar
  10. 10.
    STRANG G. “A family of model problems in Plasticity”, In: Pioc. Symp. Comp. Meth. in Appl. Sc. Eds. R. Glowinski and J.L. Lions, Lecture Notes in Math. n° 704, 1978, p. 292–308.Google Scholar
  11. 11.
    SUQUET P.: “Sur un nouveau cadre fonctionnel pour les équations de la Plasticité”, C.R. Acad. Sct. Palis, 286, 1978, p. 1129–1132.MATHMathSciNetGoogle Scholar
  12. 12.
    SUQUET P.: “Un espace fonctionnel pour les équations de la Plasti- cité”, Ann. Fac. Sci. Toulouse, 1, 1979, p. 77–87.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    BOURBAKI N.: Intégration. Hermann. Paris. 1954.Google Scholar
  14. 14.
    MATTHIES H., STRANG G.: “The saddle point of a differential program” In: Energy Methods in Finite Elements Analysis, Ed. Glowinski, Robin, Zienckiewicz. John Wiley. New-York. 1979.Google Scholar
  15. 15.
    GOFFMAN C., SERRIN J.: “Sublinear functions of measures and va- riational integrals”, Duke Math. J., 31, 1964, p. 159–178.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    DEMENGEL F. TEMAM R.: “Convex functions of a measure and appli-cations”, Indiana Univ. Math. J., 33, 1984, p. 673–709.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    GIAQUINTA M., MODICA G., SOUCEK J.: “Functionals with linear growth in the calculus of variations”, Com. Math. Univ. Carolina, 20, 1979, p. 143–171.MATHMathSciNetGoogle Scholar
  18. 18.
    VALADIER M.: “Fonctions et opérateurs sur les mesures”, C.R. Acad. Sc. Paris, I, 304, 1986, p. 135–138.MathSciNetGoogle Scholar
  19. 19.
    HADHRI, T.: “Fonction convexe d’une mesure”, C.R. Acad. Sc. Paris, I, 301, 1985, p. 687–690.MATHMathSciNetGoogle Scholar
  20. 20.
    BOUCHITTE G., SUQUET P. “Charges limites, plasticité et homo- généisatioh: le cas d’un bord chargé”, C.R. Acad. Sc. Paris, I, 305, 1987, p. 441–444.MATHMathSciNetGoogle Scholar
  21. 21.
    SUQUET P. “Existence and regularity of solutions for Plasticity problems” In Variational Methods in the of Solids, Ed S. NEMAT-NASSER, Pergamon Press, Oxford, 1980, p. 304–309.CrossRefGoogle Scholar
  22. 22.
    SUQUET P. “Sur les équations de la Plasticité: existence et ré- gularité des solutions”. J. de Mécanique, 26, 1981, p. 3–39.MathSciNetGoogle Scholar
  23. 23.
    DEMENGEL F. “Espaces de fonctions è dérivées mesures et applica- tion à, l’analyse limite en plasticité”, C.R. Acad. Sc. Paris, I, 302, 1986, p. 179–182.MATHMathSciNetGoogle Scholar
  24. 24.
    HADHRI T. “Sur le glissement à l’interface de deux milieux homo- gènes constituant un solide de Hencky”, C.R. Acad. Sc. Paris, II, 302, 1986, p. 1181–1184.MATHMathSciNetGoogle Scholar
  25. 25.
    DAL MASO G. “Integral representation on BV(0) of P-limit of variational integrals”, Manuscripta Math., 30, 1980, p. 387–416.CrossRefMATHGoogle Scholar
  26. 26.
    BOUCHITTE G. “Convergence. et relaxation de fonctionnelles du calcul des variations à croissance linéaire. Application à l’homogénéisation en plasticité”, Ann. Fac. Sc. Toulouse, 8, 1986–1987, p. 7–36.CrossRefMathSciNetGoogle Scholar
  27. 27.
    MERCIER B.: “Une méthode pour résoudre le problème des charges limites”, J. Méca., 16, 1977.Google Scholar
  28. 28.
    FREMOND M., FRIAA A. “Les méthodes statique et cinématique en calcul’à la rupture et en analyse limite”, J. Méca. Th. Appl., 1, 1982, p. 881–905.MATHMathSciNetGoogle Scholar
  29. 29.
    JOHNSON C. “Error estimates for some finite element methods for a model problem in perfect plasticity”, Meeting “Problemi matematici della meccanica dei continui”, Trento, Italy, 1981.Google Scholar
  30. 30.
    CHRISTIANSEN E.: “Computation of limit loads”, Int. J. Num. Meth. Eng., 17, 1981, p. 1547–1570.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    NGUYEN DANG HUNG “Sur la plasticité et le calcul des états limites par éléments finis”, Thèse de Doctorat Spécial. Liège, 1985.Google Scholar
  32. 32.
    GAVARINI C. “Plastic analysis of structures and duality in linear programming”, Meccanica 1, 1966.Google Scholar
  33. 33.
    DUVAUT G., LIONS J.L.: Les inéquations en Mécanique et en Physique, Dunod, Paris, 1972.MATHGoogle Scholar
  34. 34.
    NECAS J., HLAVACEK I.: Mathematical theory of elastic and elastic-plastic bodies: an introduction, Elsevier, Amsterdam, 1981.Google Scholar
  35. 35.
    KOHN R., TEMAM R. “Dual spaces of stresses and strains with applications to Hencky Plasticity”, Appl. Math. Optim., 10, 1983, p. 1–35.CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    HADHRI T. “Convex function of a measure and application to a problem of nonhomogeneous plastic material”, Preprint 140, Ecole Polytechnique, Palaiseau, France, 1986.Google Scholar
  37. 37.
    BEN DHIA H., HADHRI T. “Existence result and discontinuous finite element discretization for a plane stress Hencky problem”, Preprint 146, Ecole Polytechnique, Palaiseau, France, 1986.Google Scholar
  38. 38.
    BEN DHIA H. “Numerical analysis of a bidimensional Hencky problem approximated by a discontinuous finite element method”, Preprint 161, Ecole Polytechnique, Palaiseau, France, 1987.Google Scholar
  39. 39.
    JOHNSON C. “Existence theorems for Plasticity problems”, J. Math. Puies Appl., 55, 1976, p. 431–444.MATHGoogle Scholar
  40. 40.
    SUQUET P.: Plasticité et homogénéisation, Thèse d’Etat, Paris, 1982. See also “A few mathematical aspects of incremental plasticity”, Cours CIMPA, Monastir, 1986. To be published. Internal report 86–2, Montpellier, France.Google Scholar
  41. 41.
    BREZIS H. “Un problème d’évolution avec contraintes unilatérales dépendant du temps”, C.R. Acad. Sc. Paris, A, 274, 1972, p. 310–312.MATHMathSciNetGoogle Scholar
  42. 42.
    MOREAU J.J. “Evolution problém associated with a moving convex set in a Hilbert space”, J. Diss. Eq., 26, 1977, p. 347–374.ADSMATHMathSciNetGoogle Scholar
  43. 43.
    ANZELOTTI “On the existence of the rates of stress and displacement for Prandtl Reuss Plasticity”, Quait. Appl. Math., 46, 1983, p. 181–208.Google Scholar
  44. 44.
    PERZYNA P.: “Fundamental problems in viscoplasticity” in Advances in Applied Mechanics, 9, 1966, p. 241–258.Google Scholar
  45. 45.
    FRIAA A. “Le matériau de Norton-Hoff généralisé et sts applica-tions à l’analyse limite”, C.R. Acad. Sc. Paris, A, 286, 1978, p. 953–956.MATHMathSciNetGoogle Scholar
  46. 46.
    JOHNSON C.: “On plasticity with hardening”, J. Math. Anal. Appl., 62, 1978, p. 325–336.CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    NGUYEN QUOC SON: “Matériaux plastiques écrouissables. Distribution de la contrainte dans une évolution quasi-statique”, Aik. Mech., 25, 1973, p. 695–702.MATHGoogle Scholar
  48. 48.
    JOHNSON C. “A mixed finite element method for Plasticity with hardening”, SIAM J. Numer. Anal., 14, 1977, p. 575–583.ADSCrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    DJAOUA M.: “Analyse mathématiqúe et numérique de quelques problèmes en mécanique de la rupture”, Thèse de Doctorat d’Etat, Paris, 1983.Google Scholar
  50. 50.
    GLOWINSKI R., MAROCCO A. “Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires”, RAIRO, 1975; p. 41–76.Google Scholar
  51. 51.
    CAILLERIE D. “The effect of a thin inclusion of high rigidity in an elastic body”, Math. Meth. Appl. Sc., 2, 1980, p. 251–270.CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    BLANCHARD D., PAUMIER J.C. “Une justification de modèles de plaques viscoplastiques”, RAIRO Analyes Numérique, 18, 1984, p. 377–406.MATHMathSciNetGoogle Scholar
  53. 53.
    DESTUYNDER P., NEVEU D. “Sur les modèles de lignes plastiques en Mécanique de la Rupture”, Math. Modelling and Numer. Anal., 20, 1986, p. 251–263.MATHMathSciNetGoogle Scholar
  54. 54.
    BREZIS H., CAFFARELLI L., FRIEDMAN A. “Reinforcement problems for elliptic equations and variational inequalities”, Ann. Mat. Pura. Appl., 123, 1980, p. 219–246.CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    ACERBI E., BUTTAZO G. “Reinforcement problems in the calculus of variations”, Scuola Norm. Sup. Pisa, 1984.Google Scholar
  56. 56.
    BOUCHITTE G. Private communication, 1986.Google Scholar
  57. 57.
    SUQUET P. “Analyse limite et homogénéisation”, C.R. Acad. Sc. Paris, II, 296, 1983, p. 1355–1358.MATHMathSciNetGoogle Scholar
  58. 58.
    DE BUHAN P. “Approche fondamentale du calcul à la rupture des ouvrages en sols renforcés”, Thèse d’Etat, Paris, 1986.Google Scholar
  59. 59.
    TURGEMAN S., PASTOR J. “Comparaison des charges limites d’une structure hétérogène et homogénéisée”, J. Méça. Th. Appl, 6, 1987, 121–143.MATHGoogle Scholar
  60. 60.
    BUTTAZO G., DAL MASO G.: “Γ limit of integral functionals”, J. Anal. Math., 37, 1980, p. 145–185.CrossRefGoogle Scholar
  61. 61.
    DE GIORGI E., AMBROSIO L., BUTTAZO G. “Integral representation and relaxation for functionals defined on measures”, Scuola Norm. Sup. Pisa, 1986.Google Scholar
  62. 62.
    AZE D. “Homogénéisation primale et duale par éni-convergence”. Publications AVAMAC. Université de Perpignan, 1984.Google Scholar
  63. 63.
    DAL MASO G., LONGO P. “F-limits of obstacles”, Ann. Mat. Puia Appl, 128, 1981, p. 1–50.CrossRefMATHGoogle Scholar
  64. 64.
    ATTOUCH H., PICARD C. “Variational inequalities with varying obstacles”, J. Funct. Anal., 50, 1983, p. 329–386.CrossRefMathSciNetGoogle Scholar
  65. 65.
    BOUCHITTE G. “Homogénéisation sur BV(Ω) de fonctionnelles intégrales à croissance linéaire”, C.R. Acad. Sc. Paris, I, 301, 1985, p. 785–788.MATHMathSciNetGoogle Scholar
  66. 66.
    DEMENGEL F., TANG QI “Homogénéisation en Plasticité”, C.R. Acad. Sc. Paris, 303, I, 1986, p. 339–342.MATHMathSciNetGoogle Scholar
  67. 67.
    DJAOUA M., SUQUET P. “Evolution quasi-statique des milieux viscoplastiques de Maxwell-Norton”, Math. Meth. Appl. Sc., 6, 1984, p. 192–205.CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    BLANCHARD D., LE TALLEC P. “Numerical Analysis of the equations of small strains quasistatic elastoviscoplasticity”, Numer. Math., 50, 1986, p. 147–169.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • P. M. Suquet
    • 1
  1. 1.Université des Sciences et Techniques du LanguedocMontepellierFrance

Personalised recommendations