Skip to main content

Physical and Micromechanical Aspects of Stochastic Fatigue Crack Growth

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 334))

Abstract

The authors try to “combine” physically-based knowledge about defects and their interaction mechanisms with the more phenomenologically oriented approach to fatigue crack growth. Thermodynamics and Statistical Physics become more and more important on the “mesoscopic” level of modelling. Dissipative terms occur in the expressions of a “generalized” energy release rate and lead to non-linear R-curve behaviour. Experimental methods are presented which enable to measure local deformation and fracture behaviour (laser technique, micro-moire method, X-ray diffraction and scanning tunnel microscopy) in direct connection with image processing. Coupling of experiments and simulation is essential. Stochastic FEM and first ideas of “fuzzy” FEM will be mentioned for the study of fatigue in the fields of microelectronics and microengineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blauel, J.G. and K.-H. Schwalbe: Defect Assessment in Components - Fundamentals and Applications, Mechanical Engineering Publications Limited, London 1991, 1140 pp.

    Google Scholar 

  2. John, S.J. and C.E. Turner: Alternative Representations for Scaled R Curves in Titanium Alloy, in [1], 229–318.

    Google Scholar 

  3. Pineau, A and P. Joly: Local Versus Global Approaches to Elastic-Plastic Fracture Mechanics, in [1], 381–414.

    Google Scholar 

  4. Wallin, K.: Statistical Modelling of Fracture in the Ductile-to-Brittle Transition Region, in [1], 415–445.

    Google Scholar 

  5. Brückner-Foit, A.; D. Munz and B. Trolldenier: Micromechanical Implications of the Weakest Link Model for the Ductile-Brittle Transition Region, in [1], 477–488.

    Google Scholar 

  6. Kharin, V.S.: Nucleation and Growth of Microcracks: An Improved Dislocational Model and Implications for Ductile/ Brittle Behaviour Analysis, in [1], 489–500.

    Google Scholar 

  7. Gibson, G.P.; M. Capel and S.G. Druce: Effect of Heat Treatment on the FractureToughness Transition Properties of an A508 Class 3 Steel, in [1], 587–611.

    Google Scholar 

  8. Machida, S.; T. Miyata; Y. Yoshinari and Y. Suzuki: A Statistical Study of the Effect of Local Brittle Zone (LBZ) on the Fracture Toughness (CTOD) of Weldments, in: [1], 633–658.

    Google Scholar 

  9. Sobczyk, K. and B.F. Spencer: Random Fatigue: From Data to Theory, Academic Press Inc., Boston, San Diego 1992, 266 pp.

    Google Scholar 

  10. Bogdanoff, J.L. and F. Kozin: Probabilistic Models of Cumulative Damage, John Wiley and Sons Publ., New York 1985, 341 pp.

    Google Scholar 

  11. Grimvall, G.: Thermophysical Properties of Materials, North Holland, Amsterdam 1986, 348 pp.

    Google Scholar 

  12. Munz,D. and T. Fett: Mechanisches Verhalten keramischer Werkstoffe, Springer Verlag Berlin, Heidelberg, New York 1989, 244 pp.

    Google Scholar 

  13. Schwalbe, K.H.: Bruchmechanik metallischer Werkstoffe, Carl Hanser Verlag München, Wien 1980, 847 pp.

    Google Scholar 

  14. Kovacs, I. and L. Zsoldos: Dislocations and Plastic Deformation, Akademiai Kiado, Budapest 1973, 342 pp.

    MATH  Google Scholar 

  15. Karlsson, B. and J. Wasen: Experimental Characterization and Geometrical Modelling of Fatigue Fracture Profiles,7th. European Conf. on Fracture (ECF7), Budapest, Oct. 1988, Proc. p. 3382.

    Google Scholar 

  16. Winkler, T.; A. Brueckner-Foit and H. Riesch-Oppermann: Statistical Characterization of Random Crack Pattern Caused by Thermal Fatigue. Fatigue Fract. Engng. Mat. Struct., 1992 (in print)

    Google Scholar 

  17. Stoyan, D.; W.S. Kandall and F. Mecke: Stochastic Geometry and its Applications. Akademie Berlin 1989, 345 pp.

    Google Scholar 

  18. Winkler, T.; B. Michel and H. Voigt: Simulation of Random Crack Initiation, Growth, and Coalescence. Materials Science Forum 62–64 (1990), 685–686

    Google Scholar 

  19. Miller, K.J. and E.R. de los Rios (ed.): The Behaviour of Short Fatigue Cracks, Mech. Eng. Publ. Ltd., London 1986, 560 pp.

    Google Scholar 

  20. Krausz, A.S. and K. Krausz: Fracture Kinetics of Crack Growth, Kluwer Academic Publishers, Dordrecht, Boston, London 1988, 181 pp.

    Book  Google Scholar 

  21. Eshelby, J.D.: Progress in Solid Mechanics, Chapt. 3, North Holland Publ. Co., Amsterdam 1961, 231 pp.

    Google Scholar 

  22. Michel, B.: Elastic Interaction of Point Defects with a Precipitation Near a Solid Surface or an Interface, Crystal Research and Technology 14(1979)12,1483–1489.

    Google Scholar 

  23. Michel, B.: A Note on the Interface Interaction of Point Defects and Volume Defects, Physica Status Solidi (b) 89 (1978)K179–181.

    Google Scholar 

  24. Michel, B.: Über die Wechselbeziehungen zwischen Kontinuumsmechanik und Festkörperphysik, Fortschritte der Physik 29(1982)233–310.

    Google Scholar 

  25. Michel, B.; T. Winkler and J.-P. Sommer: Theoretical Concepts and Experiments in Fracture Mechanics - Macroscopic and Microscopic Aspects of Modelling, Plenary lecture held at 1st European Conference on Solid Mechanics, Munich, Sept 1991, in: European Journal of Mechanics, A/Solides, 11(1992), 115–133.

    Google Scholar 

  26. Michel, B.; P. Will; R. Kuehnert and L. Skurt: Generalized and Nonlinear Fracture Concepts for Advanced Materials, Proc. 6th. Int. Conf. on Mechanical Behaviour of Materials (ICM 6), Kyoto,Japan, August 1991, vol. 4, Pergamon Press New York, Oxford 1991, 231–236.

    Google Scholar 

  27. Will, P.; B. Michel and U. Zerbst: JTJ -controlled Crack Growth Modification of J-R Testing and Failure Assessment Diagrams, Engineering Fracture Mechanics 28(1987)2,197–201.

    Google Scholar 

  28. Saka, M.; T. Shoji; H. Takehashi and H. Abe: A Criterion Based on Crack- Tip Energy Dissipation in Plane Strain Crack Growth Under Large Scale Yielding, ASTM STP 803 (1983)1130–1158.

    Google Scholar 

  29. Krausz, A.S. and H, Eyring: Deformation Kinetics, Wiley- Interscience 1975.

    Google Scholar 

  30. Fuller, E.R. and R.M. Thomson: Lattice Theories of Fracture, in: Fracture Mechanics of Ceramics (ed. R.C. Brand and D.F.H. Hasselmann ), Plenum Press 1986, 333–340.

    Google Scholar 

  31. De Lange, R.G.: Plastic Replica Methods Applied to a Study of Fatigue Crack Propagation, Trans. AIME 230 (1964) 644–648.

    Google Scholar 

  32. Pearson, S.: Investigation of Fatigue Cracks in Commercial Al Alloys and Subsequent Propagation of Very Short Fatigue Cracks, Engineering Fracture Mechanics 7(1975)235–247.

    Google Scholar 

  33. Schijve, J.: The Practical and Theoretical Significance of Small Cracks. An Evaluation, Fatigue 84, EMAS Publ., Warley 1984, 751.

    Google Scholar 

  34. Jeal, R.H.: The Specification of Gas Turbine Disc Forgings, Metals Materials 1(1985)528–533.

    Google Scholar 

  35. Yoder, G.R.; L.A. Cooley and T.W. Crooker: A Critical Analysis of Grain Size and Yield-Strength Dependence of Near-Threshold Fatigue-Crack Growth in Steels, NRL Memo. Rep. No. 4576, Washington D.C., 1981.

    Google Scholar 

  36. Kitagawa, H.; Y. Nakasone, and S. Miyashita: Measurement of Fatigue Damage by Randomly Distributed Small Cracks. In: Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage. ASTM STP 811 (ed. J. Lankford et al ), 233–263. ASTM Philadelphia 1983

    Google Scholar 

  37. Hoshide, T. and D.F. Socie: Crack Nucleation and Growth Modelled in Biaxial Fatigue. Engng. Fract. Mech. 29 (1988) 287–299

    Article  Google Scholar 

  38. Suh, C.M.; J.J Lee and Y.G. Kang: Fatigue Microcracks in Type 304 Stainless Steel at Elevated Temperature. Fatigue Fract. Engng. Mater. Struct. 13(1990)487–496

    Google Scholar 

  39. Riesch-Oppermann, H.; A. Brückner-Foit, D. Munz and T. Winkler: Crack Initiation, Growth and Interaction in Thermal Cyclic Loading - A Statistical Approach. In: Proc. Int. Conf. Behaviour of Defects at High Temperatures, Sheffield 1992, ESIS-Publ. (to be published )

    Google Scholar 

  40. Kullig, E.; H. Riesch-Oppermann, T. Winkler and A. Brückner-Foit: Lifetime Prediction for Thermal Fatigue: Development of Stochastic Model. In: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials - 3, DVM-Verlag, Berlin 1992.

    Google Scholar 

  41. Kuehnert, R. and B. Michel: Second Order Moire Analysis, Physica Status Solidi 89(1988)K163–165.

    Google Scholar 

  42. Michel, B. and R. Kuehnert: Quantitative Deformationsanalyse im Mikrobereich, Proc. 2nd Symposium Materialforschung des Bundesmin. für Forschung und Technologie, Dresden, August 1991, 20 pp.

    Google Scholar 

  43. Kuehnert, R.: Thesis, in: Series Fracture Mechanics, Micromechanics, Coupled Fields (FMC), vol. 30, Institute of Mechanics Chemnitz 1987, 100 pp.

    Google Scholar 

  44. Taylor, D.: The Limitations of Fracture Mechanics, in: EGF-Publication No. 1 (ed. K.J. Miller and E.R. de los Rios ), London 1986, 479.

    Google Scholar 

  45. B. Michel (ed.): Forschungsbericht Mechanische Zuverlässigkeit in der Mikrotechnik, erstellt im Auftrag der Fraunhofer-Gesellschaft München, Centrum für Mikromechanik Chemnitz, Juli 1992.

    Google Scholar 

  46. Suresh, S. and R.D. Ritchie: The Propagation of Short Fatigue Cracks, Report No. UCB/RP/83/1014, University of Berkeley, California, 1983.

    Google Scholar 

  47. Ilen, R.J. and J.C. Sinclair: The Behaviour of Short Cracks, Fatigue Fract. Engng. Mater. Struct. 5 (1982), 343

    Article  Google Scholar 

  48. Suresh, S.: Crack Deflection: Implications for the Growth of Long and Short Fatigue Cracks, Met.Trans. 14A (1983) 2375.

    Google Scholar 

  49. Miller, K.J.; H.J. Mohamed and E.R. de los Rios: Fatigue Damage Accumulation Above and Below the Fatigue Limit, in [19] 491.

    Google Scholar 

  50. Kaempfe, B. and B. Michel: A New Approach to X-Ray Diffraction Analysis of Stress States in Surface Layers, Acta Technica Hungarica 99(1986)3/4,313.

    Google Scholar 

  51. Skurt, L.: Anwendung einer Stochastischen Finite Elemente Methode in der Bruchmechanik, Series Fracture Mechanics, Micromechanics, Coupled Fields (FMC), No. 19, Chemnitz, 1986, 45–54.

    Google Scholar 

  52. Skurt, L. and B. Michel: Eine stochastische Finite Elemente Methode, angewendet in der Bruchmechanik, Series Fracture Mechanics, Micromechanics, Coupled Fields (FMC), No. 23, Chemnitz 1986, 17–28.

    Google Scholar 

  53. Bandemer, H. and S. Gottwald: Einführung in Fuzzy-Methoden, Akademie-Verlag, Berlin 1989, 22.

    Google Scholar 

  54. Will, P. and B. Michel: A Model for JTJ-controlled Fatigue Crack Growth, Intern. J. Fatigue 11(1989)2,126–128.

    Google Scholar 

  55. WiII,P; S. Helbig and B. Michel: Mikromechanisches stochastisches Versagensmodell uniaxial faserverstärkter Verbundwerkstoffe, Materialwissenschaft und Werkstofftechnik, Darmstadt (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Michel, B., Winkler, T., Skurt, L. (1993). Physical and Micromechanical Aspects of Stochastic Fatigue Crack Growth. In: Sobczyk, K. (eds) Stochastic Approach to Fatigue. International Centre for Mechanical Sciences, vol 334. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2622-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2622-6_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82452-8

  • Online ISBN: 978-3-7091-2622-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics