Physical and Micromechanical Aspects of Stochastic Fatigue Crack Growth

  • B. Michel
  • T. Winkler
  • L. Skurt
Part of the International Centre for Mechanical Sciences book series (CISM, volume 334)


The authors try to “combine” physically-based knowledge about defects and their interaction mechanisms with the more phenomenologically oriented approach to fatigue crack growth. Thermodynamics and Statistical Physics become more and more important on the “mesoscopic” level of modelling. Dissipative terms occur in the expressions of a “generalized” energy release rate and lead to non-linear R-curve behaviour. Experimental methods are presented which enable to measure local deformation and fracture behaviour (laser technique, micro-moire method, X-ray diffraction and scanning tunnel microscopy) in direct connection with image processing. Coupling of experiments and simulation is essential. Stochastic FEM and first ideas of “fuzzy” FEM will be mentioned for the study of fatigue in the fields of microelectronics and microengineering.


Fatigue Crack Fatigue Crack Growth Energy Release Rate Print Circuit Board Physical Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blauel, J.G. and K.-H. Schwalbe: Defect Assessment in Components - Fundamentals and Applications, Mechanical Engineering Publications Limited, London 1991, 1140 pp.Google Scholar
  2. 2.
    John, S.J. and C.E. Turner: Alternative Representations for Scaled R Curves in Titanium Alloy, in [1], 229–318.Google Scholar
  3. 3.
    Pineau, A and P. Joly: Local Versus Global Approaches to Elastic-Plastic Fracture Mechanics, in [1], 381–414.Google Scholar
  4. 4.
    Wallin, K.: Statistical Modelling of Fracture in the Ductile-to-Brittle Transition Region, in [1], 415–445.Google Scholar
  5. 5.
    Brückner-Foit, A.; D. Munz and B. Trolldenier: Micromechanical Implications of the Weakest Link Model for the Ductile-Brittle Transition Region, in [1], 477–488.Google Scholar
  6. 6.
    Kharin, V.S.: Nucleation and Growth of Microcracks: An Improved Dislocational Model and Implications for Ductile/ Brittle Behaviour Analysis, in [1], 489–500.Google Scholar
  7. 7.
    Gibson, G.P.; M. Capel and S.G. Druce: Effect of Heat Treatment on the FractureToughness Transition Properties of an A508 Class 3 Steel, in [1], 587–611.Google Scholar
  8. 8.
    Machida, S.; T. Miyata; Y. Yoshinari and Y. Suzuki: A Statistical Study of the Effect of Local Brittle Zone (LBZ) on the Fracture Toughness (CTOD) of Weldments, in: [1], 633–658.Google Scholar
  9. 9.
    Sobczyk, K. and B.F. Spencer: Random Fatigue: From Data to Theory, Academic Press Inc., Boston, San Diego 1992, 266 pp.Google Scholar
  10. 10.
    Bogdanoff, J.L. and F. Kozin: Probabilistic Models of Cumulative Damage, John Wiley and Sons Publ., New York 1985, 341 pp.Google Scholar
  11. 11.
    Grimvall, G.: Thermophysical Properties of Materials, North Holland, Amsterdam 1986, 348 pp.Google Scholar
  12. 12.
    Munz,D. and T. Fett: Mechanisches Verhalten keramischer Werkstoffe, Springer Verlag Berlin, Heidelberg, New York 1989, 244 pp.Google Scholar
  13. 13.
    Schwalbe, K.H.: Bruchmechanik metallischer Werkstoffe, Carl Hanser Verlag München, Wien 1980, 847 pp.Google Scholar
  14. 14.
    Kovacs, I. and L. Zsoldos: Dislocations and Plastic Deformation, Akademiai Kiado, Budapest 1973, 342 pp.MATHGoogle Scholar
  15. 15.
    Karlsson, B. and J. Wasen: Experimental Characterization and Geometrical Modelling of Fatigue Fracture Profiles,7th. European Conf. on Fracture (ECF7), Budapest, Oct. 1988, Proc. p. 3382.Google Scholar
  16. 16.
    Winkler, T.; A. Brueckner-Foit and H. Riesch-Oppermann: Statistical Characterization of Random Crack Pattern Caused by Thermal Fatigue. Fatigue Fract. Engng. Mat. Struct., 1992 (in print)Google Scholar
  17. 17.
    Stoyan, D.; W.S. Kandall and F. Mecke: Stochastic Geometry and its Applications. Akademie Berlin 1989, 345 pp.Google Scholar
  18. 18.
    Winkler, T.; B. Michel and H. Voigt: Simulation of Random Crack Initiation, Growth, and Coalescence. Materials Science Forum 62–64 (1990), 685–686Google Scholar
  19. 19.
    Miller, K.J. and E.R. de los Rios (ed.): The Behaviour of Short Fatigue Cracks, Mech. Eng. Publ. Ltd., London 1986, 560 pp.Google Scholar
  20. 20.
    Krausz, A.S. and K. Krausz: Fracture Kinetics of Crack Growth, Kluwer Academic Publishers, Dordrecht, Boston, London 1988, 181 pp.CrossRefGoogle Scholar
  21. 21.
    Eshelby, J.D.: Progress in Solid Mechanics, Chapt. 3, North Holland Publ. Co., Amsterdam 1961, 231 pp.Google Scholar
  22. 22.
    Michel, B.: Elastic Interaction of Point Defects with a Precipitation Near a Solid Surface or an Interface, Crystal Research and Technology 14(1979)12,1483–1489.Google Scholar
  23. 23.
    Michel, B.: A Note on the Interface Interaction of Point Defects and Volume Defects, Physica Status Solidi (b) 89 (1978)K179–181.Google Scholar
  24. 24.
    Michel, B.: Über die Wechselbeziehungen zwischen Kontinuumsmechanik und Festkörperphysik, Fortschritte der Physik 29(1982)233–310.Google Scholar
  25. 25.
    Michel, B.; T. Winkler and J.-P. Sommer: Theoretical Concepts and Experiments in Fracture Mechanics - Macroscopic and Microscopic Aspects of Modelling, Plenary lecture held at 1st European Conference on Solid Mechanics, Munich, Sept 1991, in: European Journal of Mechanics, A/Solides, 11(1992), 115–133.Google Scholar
  26. 26.
    Michel, B.; P. Will; R. Kuehnert and L. Skurt: Generalized and Nonlinear Fracture Concepts for Advanced Materials, Proc. 6th. Int. Conf. on Mechanical Behaviour of Materials (ICM 6), Kyoto,Japan, August 1991, vol. 4, Pergamon Press New York, Oxford 1991, 231–236.Google Scholar
  27. 27.
    Will, P.; B. Michel and U. Zerbst: JTJ -controlled Crack Growth Modification of J-R Testing and Failure Assessment Diagrams, Engineering Fracture Mechanics 28(1987)2,197–201.Google Scholar
  28. 28.
    Saka, M.; T. Shoji; H. Takehashi and H. Abe: A Criterion Based on Crack- Tip Energy Dissipation in Plane Strain Crack Growth Under Large Scale Yielding, ASTM STP 803 (1983)1130–1158.Google Scholar
  29. 29.
    Krausz, A.S. and H, Eyring: Deformation Kinetics, Wiley- Interscience 1975.Google Scholar
  30. 30.
    Fuller, E.R. and R.M. Thomson: Lattice Theories of Fracture, in: Fracture Mechanics of Ceramics (ed. R.C. Brand and D.F.H. Hasselmann ), Plenum Press 1986, 333–340.Google Scholar
  31. 31.
    De Lange, R.G.: Plastic Replica Methods Applied to a Study of Fatigue Crack Propagation, Trans. AIME 230 (1964) 644–648.Google Scholar
  32. 32.
    Pearson, S.: Investigation of Fatigue Cracks in Commercial Al Alloys and Subsequent Propagation of Very Short Fatigue Cracks, Engineering Fracture Mechanics 7(1975)235–247.Google Scholar
  33. 33.
    Schijve, J.: The Practical and Theoretical Significance of Small Cracks. An Evaluation, Fatigue 84, EMAS Publ., Warley 1984, 751.Google Scholar
  34. 34.
    Jeal, R.H.: The Specification of Gas Turbine Disc Forgings, Metals Materials 1(1985)528–533.Google Scholar
  35. 35.
    Yoder, G.R.; L.A. Cooley and T.W. Crooker: A Critical Analysis of Grain Size and Yield-Strength Dependence of Near-Threshold Fatigue-Crack Growth in Steels, NRL Memo. Rep. No. 4576, Washington D.C., 1981.Google Scholar
  36. 36.
    Kitagawa, H.; Y. Nakasone, and S. Miyashita: Measurement of Fatigue Damage by Randomly Distributed Small Cracks. In: Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage. ASTM STP 811 (ed. J. Lankford et al ), 233–263. ASTM Philadelphia 1983Google Scholar
  37. 37.
    Hoshide, T. and D.F. Socie: Crack Nucleation and Growth Modelled in Biaxial Fatigue. Engng. Fract. Mech. 29 (1988) 287–299CrossRefGoogle Scholar
  38. 38.
    Suh, C.M.; J.J Lee and Y.G. Kang: Fatigue Microcracks in Type 304 Stainless Steel at Elevated Temperature. Fatigue Fract. Engng. Mater. Struct. 13(1990)487–496Google Scholar
  39. 39.
    Riesch-Oppermann, H.; A. Brückner-Foit, D. Munz and T. Winkler: Crack Initiation, Growth and Interaction in Thermal Cyclic Loading - A Statistical Approach. In: Proc. Int. Conf. Behaviour of Defects at High Temperatures, Sheffield 1992, ESIS-Publ. (to be published )Google Scholar
  40. 40.
    Kullig, E.; H. Riesch-Oppermann, T. Winkler and A. Brückner-Foit: Lifetime Prediction for Thermal Fatigue: Development of Stochastic Model. In: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials - 3, DVM-Verlag, Berlin 1992.Google Scholar
  41. 41.
    Kuehnert, R. and B. Michel: Second Order Moire Analysis, Physica Status Solidi 89(1988)K163–165.Google Scholar
  42. 42.
    Michel, B. and R. Kuehnert: Quantitative Deformationsanalyse im Mikrobereich, Proc. 2nd Symposium Materialforschung des Bundesmin. für Forschung und Technologie, Dresden, August 1991, 20 pp.Google Scholar
  43. 43.
    Kuehnert, R.: Thesis, in: Series Fracture Mechanics, Micromechanics, Coupled Fields (FMC), vol. 30, Institute of Mechanics Chemnitz 1987, 100 pp.Google Scholar
  44. 44.
    Taylor, D.: The Limitations of Fracture Mechanics, in: EGF-Publication No. 1 (ed. K.J. Miller and E.R. de los Rios ), London 1986, 479.Google Scholar
  45. 45.
    B. Michel (ed.): Forschungsbericht Mechanische Zuverlässigkeit in der Mikrotechnik, erstellt im Auftrag der Fraunhofer-Gesellschaft München, Centrum für Mikromechanik Chemnitz, Juli 1992.Google Scholar
  46. 46.
    Suresh, S. and R.D. Ritchie: The Propagation of Short Fatigue Cracks, Report No. UCB/RP/83/1014, University of Berkeley, California, 1983.Google Scholar
  47. 47.
    Ilen, R.J. and J.C. Sinclair: The Behaviour of Short Cracks, Fatigue Fract. Engng. Mater. Struct. 5 (1982), 343CrossRefGoogle Scholar
  48. 48.
    Suresh, S.: Crack Deflection: Implications for the Growth of Long and Short Fatigue Cracks, Met.Trans. 14A (1983) 2375.Google Scholar
  49. 49.
    Miller, K.J.; H.J. Mohamed and E.R. de los Rios: Fatigue Damage Accumulation Above and Below the Fatigue Limit, in [19] 491.Google Scholar
  50. 50.
    Kaempfe, B. and B. Michel: A New Approach to X-Ray Diffraction Analysis of Stress States in Surface Layers, Acta Technica Hungarica 99(1986)3/4,313.Google Scholar
  51. 51.
    Skurt, L.: Anwendung einer Stochastischen Finite Elemente Methode in der Bruchmechanik, Series Fracture Mechanics, Micromechanics, Coupled Fields (FMC), No. 19, Chemnitz, 1986, 45–54.Google Scholar
  52. 52.
    Skurt, L. and B. Michel: Eine stochastische Finite Elemente Methode, angewendet in der Bruchmechanik, Series Fracture Mechanics, Micromechanics, Coupled Fields (FMC), No. 23, Chemnitz 1986, 17–28.Google Scholar
  53. 53.
    Bandemer, H. and S. Gottwald: Einführung in Fuzzy-Methoden, Akademie-Verlag, Berlin 1989, 22.Google Scholar
  54. 54.
    Will, P. and B. Michel: A Model for JTJ-controlled Fatigue Crack Growth, Intern. J. Fatigue 11(1989)2,126–128.Google Scholar
  55. 55.
    WiII,P; S. Helbig and B. Michel: Mikromechanisches stochastisches Versagensmodell uniaxial faserverstärkter Verbundwerkstoffe, Materialwissenschaft und Werkstofftechnik, Darmstadt (to be published).Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • B. Michel
    • 1
  • T. Winkler
    • 1
  • L. Skurt
    • 1
  1. 1.Centrum für MikromechanikChemnitzGermany

Personalised recommendations