Advertisement

A Tutorial on Non-Parametric Bilinear Time-Frequency Signal Representations

  • W. Mecklenbräuker
Part of the International Centre for Mechanical Sciences book series (CISM, volume 309)

Abstract

Nonstationary signals have a time-dependent spectral content. This is in contrast to stationary signals whose energy spectrum characterizes their spectral content and that is independent of time. Therefore, nonstationary signals require joint time—frequency representations.

Keywords

Signal Representation Interference Term Wigner Distribution Ambiguity Function Spectral Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wigner, E.P., On the quantum correction for thermo-dynamic equilibrium, Phys. Rev. 40, 749–759. 1932CrossRefGoogle Scholar
  2. Gabor, D., Theory of communication, J. IEE (London) 93 (III) (November), 429–457. Koenig, R., H.K. Dunn and L.Y. Lacy, The sound spectrograph, J. Acoust. Soc. Amer. 18, 19–49. 1946Google Scholar
  3. Potter, R.K., G.A. Kopp and H.C. Green, Visible Speech ( Van Nostrand, New York). Republished by Dover Publications, 1966. 1947Google Scholar
  4. Ville, J., Théorie et applications de la notion de signal analytique, Câbles et Transmission 2A(1), 61–74 [Engl. Transl.: I. Selin, Rand Corp. Report T-92, August 1, 1958. 1948Google Scholar
  5. Moyal, J.E., Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45 (January), 99–124. 1949MathSciNetCrossRefMATHGoogle Scholar
  6. Fano, R.M., Short-time autocorrelation functions and power spectra, J. Acoust. Soc. Amer. 22(5) (September), 546–550. 1950Google Scholar
  7. Page, C.H., Instantaneous power spectra, J. Appl. Phys. 23. 103–106. 1952MATHGoogle Scholar
  8. Woodward, P.M., Probability and information theory with application to radar ( Pergamon Press, London ). 1953Google Scholar
  9. Blanc-Lapierre, A., and B. Picinbono, Remarques sur la notion du spectre instantané de puissance, Publ. Sci. Univ. d’Alger, Série B1, 2–32. 1955Google Scholar
  10. More, H., I. Oppenheim and J. Ross, Some topics in quantum statistics: the Wigner function and transport theory, in: Studies in Statistical Mechanics, ed. G.E. Uhlenbeck, ( North-Holland Publishing, Amsterdam ) pp. 213–298. 1962Google Scholar
  11. Schroeder, M.R., and B.S. Atal, Generalized short-time power spectra and auto-correlation function, J. Acoust. Soc. Amer. 34(11), (November), 1679–1683. 1964Google Scholar
  12. Levin, M.J., Instantaneous power spectra and ambiguity function. IEEE Trans. Inf. Theory IT-10, 95–97. 1966Google Scholar
  13. Cohen, L., Generalized phase-space distribution functions, J. Math. Phys. 7, 781–786. 1966CrossRefGoogle Scholar
  14. Helström, C.W., An expansion of a signal into Gaussian elementary signals. IEE Trans. Inf. Theory IT-12, 81–82. 1966Google Scholar
  15. DeBruijn, N.G., Uncertainty principles in Fourier analysis, in: Inequalities, ed. O. Shisha ( Academic Press, New York ) pp. 57–71. 1967Google Scholar
  16. Levin, M.J., Instantaneous spectra and ambiguity functions, IEEE Trans. Inf. Theory IT-13, 95–97. 1967Google Scholar
  17. Margenau, H., and L. Cohen. Probabilities in quantum mechanics, in: Quantum theory and reality, ed. M. Bunge (Springer, Berlin) ch. 4, pp. 71–89. 1967CrossRefGoogle Scholar
  18. Montgomery, L.K., and I.S. Reed, A generalization of the Gabor-Helström transform. IEEE Trans. Inf. Theory IT-13, 344–345. 1968Google Scholar
  19. Bonnet, G., Considérations sur la représentation et l’analyse harmonique des signaux déterministes ou aléatoires, Ann. Télécom. 23 (3–4), 62–86. 1968MathSciNetMATHGoogle Scholar
  20. Rihaczek, A.W., Signal energy distribution in time and frequency, IEEE Trans. Inf. Theory IT-14, 369–374. 1968Google Scholar
  21. Ackroyd, M.H., Short-time spectra and time—frequency energy distributions, J. Acoust. Soc. Amer. 50 (5), 1229–1231. 1970Google Scholar
  22. Ackroyd, M.H., Instantaneous and time-varying spectra — An introduction, Radio Electron. Eng. 39, 145–152. 1970Google Scholar
  23. Ackroyd, M.H., Instantaneous spectra and instantaneous frequency, Proc. IEEE 58 (1). p. 141. 1970Google Scholar
  24. Mark, W.D., Spectral analysis of the convolution and filtering of non-stationary stochastic processes, J. Sound Vib. 11(1), 19–63. 1970Google Scholar
  25. Oppenheim, A.V., Speech spectrograms using the fast Fourier transform, IEEE Spectrum 7 (August), 57–62. 1970CrossRefGoogle Scholar
  26. Ruggeri, G.J., On phase-space description of quantum mechanics, Prog. Theor. Phvs. 46 (6), 1703–1712. 1971MathSciNetCrossRefMATHGoogle Scholar
  27. Escudié, B., Représentation temps—fréquence dans l’analyse et la synthèse des signaux. in: 6è Congrès International de Cybernétique, pp. 277–299. 1972Google Scholar
  28. Levshin, A., V.F. Pisarenko and G.A. Pogrebinsky, On a frequency—time analysis of oscillations, Ann. Geophys. 28, 211–218. 1972Google Scholar
  29. Nelson, G.A., Signal analysis in time and frequency using Gaussian wavefunctions. in: NATO Advanced Studies Institute on Network and Signal Theory, ed. J.O. Scalan (September 1972) pp. 454–460. 1972Google Scholar
  30. DeBruijn, N.G., A theory of generalized functions with applications to Wigner distribution and Weyl correspondence, Nieuw Arch. Wiskunde 21. 205–280. 1973MathSciNetGoogle Scholar
  31. Lacoume, J.L., and W. Kofman. Description des processus non-stationnaires par la représentation temps—fréquence. 56 Coll. Traitement du Signal et applications GRETSI, 14/1–14/7 (Nice). 1975Google Scholar
  32. Escudié, B., and J. Gréa, Sur une formulation générale de la représentation en temps et fréquence dans l’analyse de signaux d’énergie finie, C. R. Acad. Sci. Paris, série A 283, 1049–1051. 1976Google Scholar
  33. Kodera, K., C. DeVilledary and R. Gendrin. A new method for the numerical analysis of non-stationary signals, Phys. Earth Planet. Inter. 12, 142–150. 1976Google Scholar
  34. Krüger, J.G., and A. Poffyn, Quantum mechanics in phase space. Part I — Unicity of the Wigner distribution function. Physica 85A. 84–100. 1976MathSciNetCrossRefGoogle Scholar
  35. Tjostheim, D., Spectral generating operators for non-stationary processes. Adv. Appl. Prob. 8. 831–846. 1976MathSciNetCrossRefMATHGoogle Scholar
  36. Allen, J.B., and L.R. Rabiner, A unified approach to short-time Fourier analysis and synthesis, Proc. IEEE 65, 1558–1564. 1977CrossRefGoogle Scholar
  37. Berry, M.V., Semi-classical mechanics in phase space: a study of Wigner’s function, Phil. Trans. Roy. Soc. A 287, 237. 1977CrossRefMATHGoogle Scholar
  38. Escudié, B., and J. Gréa, Représentation Hilbertienne et représentation conjointe en temps et fréquence des signaux d’énergie finie, Coll. GRETSI, Nice, France (April 1977). 1977Google Scholar
  39. Royer, A., Wigner distribution as the expectation value of a parity operator, Phys. Rev. A15(2), 449, 450. 1977Google Scholar
  40. Bastiaans, M.J., The Wigner distribution function applied to optical signal and systems, Opt. Commun. 25, 26–30. 1978CrossRefGoogle Scholar
  41. Kodera, K., R. Gendrin and C. DeVilledary, Analysis of time-varying signals with small BT values, IEEE Trans. Acoust., Speech Signal Process. ASSP-26(1), 64–76. 1978Google Scholar
  42. Melard, G., Propriétés du spectre évolutif d’un processus non-stationnaire, Ann. Inst. Henri Poincaré B XIV (4), 411–424. 1978MathSciNetGoogle Scholar
  43. Bastiaans, M.J., Wigner distribution function and its application to first order optics, J. Opt. Soc. Amer. 69, 1710–1716. 1979Google Scholar
  44. Bastiaans, M.J., The Wigner distribution function and Hamiltonian’s characteristics of a geometrical-optical system, Opt. Commun. 30 (3), 321–326. 1979CrossRefGoogle Scholar
  45. Bastiaans, M.J., Transport equations for the Wigner distribution function. Opt. Acta 26, 1256–1272. 1979MathSciNetGoogle Scholar
  46. Bastiaans, M.J., Transport equations for the Wigner distribution function in inhomogeneous and dispersive media, Opt. Acta 26, 1334–1344. 1979MathSciNetGoogle Scholar
  47. Bouachache, B., B. Escudié, P. Flandrin and J. Gréa, Sur une condition nécessaire et suffisante de positivité de la représentation conjointe en temps et fréquence des signaux d’énergie finie, C. R. Acad. Sci. Paris, Série A 288, 307–309. 1979Google Scholar
  48. Bouachache, B., B. Escudié and J.M. Komatitsch, Sur la possibilité d’utiliser la représentation conjointe en temps et fréquence dans l’analyse des signaux modulés en fréquence émis en vibrosismique, 7ème Coll. GRETSI sur le Traitement du Signal et Applications. Nice, France (1979) pp. 121/1–121/6. 1979Google Scholar
  49. Bremmer, H., The Wigner distribution and transport equations in radiation problems, J. Appl. Soc. Eng. A 3, 251–260. 1979Google Scholar
  50. Escudié, B., “Représentation en temps et fréquence des signaux d’énergie finie: analyse et observation des signaux. Ann. Télécommun. 34 (3–4), 101–111. 1979Google Scholar
  51. Escudié, B., P. Flandrin and J. Gréa. Positivité des représentations en temps et fréquence des signaux d’énergie finie, représentation Hilbertienne et conditions d’observation des signaux, 7ème Coll. GRETSI sur le Traitement du Signal et Applications, Nice, France (1979) pp. 28/5–2/6/79. 1979Google Scholar
  52. Fargetton, H., Fréquences instantanées de signaux multicomposantes, Thèse (Grenoble). 1979Google Scholar
  53. Gendrin, R., and C. DeVilledary, Unambiguous determination of fine structures in multicomponent time-varying signals, Ann. Télécommun. 35 (3–4), 122–130. 1979Google Scholar
  54. Janssen, A.J.E.M., Application of Wigner distributions to harmonic analysis of generalized stochastic processes, MC-tract 114 (Mathematisch Centrum, Ansterdam). 1979Google Scholar
  55. Rabiner, L.R., and J.B. Allen, Short-time Fourier analysis techniques for FIR system identification and power spectrum estimation, IEEE Trans. Acoust., Speech Signal Process. ASSP-27. 1979Google Scholar
  56. Wigner, D.P.; Quantum-mechanical distribution functions revisited, in: Perspectives in quantum theory, eds. W. Yourgran and A. van de Merwe ( Dover, New York ). 1979Google Scholar
  57. Altes, R.A., Detection, estimation and classification with spectrograms. J. Acoust. Soc. Am. 67 (4), 1232–1246. 1980Google Scholar
  58. Bastiaans, M.J., Gabor’s expansion of the signal into Gaussian elementary signals, Proc. IEEE 68 (4) p. 538. 1980CrossRefGoogle Scholar
  59. Bastiaans, M.J., Wigner distribution function display: a supplement to ambiguity display using a single 1-D Input, Appl. Opt. 19 (2), 192. 1980Google Scholar
  60. Bartelt, H.O., K-H. Brenner and A.W. Lohmann, The Wigner distribution function and its optical production, Opt. Commun. 32, 32–38. 1980CrossRefGoogle Scholar
  61. Claasen; T.A.C.M.. and W.F.G. Mecklenbräuker, The Wigner distribution — a tool for time—frequency signal analysis — Part I: Continuous-time signals, Philips J. Res. 35 (3), 217–250. 1980MathSciNetGoogle Scholar
  62. Claasen, T.A.C.M., and W.F.G. Mecklenbräuker, The Wigner distribution — a tool for time—frequency signal analysis — Part II: Discrete-time signals, Philips J. Res. 35 (4/5), 276–300. 1980MATHGoogle Scholar
  63. Claasen, T.A.C.M., and W.F.G. Mecklenbräuker, The Wigner distribution — a tool for time—frequency signal analysis — Part III: Relations with other time—frequency signal transformations, Philips J. Res. 35 (6), 372–389. 1980MathSciNetMATHGoogle Scholar
  64. Escudié, B., and P. Flandrin, Sur quelques propriétés de la représentation conjointe et de la fonction d’ambiguité des signaux d’énergie finie, C. R. Acad. Sci. Paris A 291, 171–174. 1980MATHGoogle Scholar
  65. Flandrin, P., Application de la théorie des catastrophes a l’étude du comportement asymptotique de la représentation conjointe de Wigner—Ville, DEA, CEPHAG, Grenoble, 1980. 1980Google Scholar
  66. Flandrin, P., and B. Escudié, Time and frequency representation of finite energy signals: a physical property as a result of a Hilbertian condition, Signal Process. 2. 93–100. 1980MathSciNetCrossRefGoogle Scholar
  67. Marcuvitz, N., Quasiparticle view of wave propagation, Proc. IEEE, 68, pp. 1380–1395. 1980CrossRefGoogle Scholar
  68. Portnoff, M.R., Time—Frequency Representation of Digital Signals and Systems based on Short-time Fourier Analysis, IEEE Trans. Acoust., Speech Signal Process. ASSP-28(1), pp. 55–69. 1980Google Scholar
  69. Bastiaans, M.J., The Wigner distribution function and its applications to optics, in: Optics in Four Dimensions, ed. L.M. Narducci ( American Institute of Physics, New York ) pp. 292–312. 1981Google Scholar
  70. Bastiaans, M.J., A sampling theorem for the complex spectrogram and Gabor expansion of a signal in Gaussian elementary signals, Opt. Eng. 20(4), 594–598; in: Proc. Int. Opt. Computing Conf., Washington, D.C., 8–11 April, 1980. 1981Google Scholar
  71. Bertrand, P., and C. Fugier-Garrel, Formulation de la théorie de la communication dans le plan temps—frequence — aspects practiques,“ 8ème Coll. GRETSI, Nice (1981), pp. 829–834. 1981Google Scholar
  72. Claasen, T.A.C.M., and W.F.G. Mecklenbräuker, Time-frequency signal analysis by means of the Wigner distribution, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Atlanta, CA (1981), pp. 69–72. 1981Google Scholar
  73. Fargetton, H., R. Gendrin and J.L. Lacoume, Adaptive methods for spectral analysis of time-varying signals, in: Signal Processing: Theories and Applications — II, (Proc. EUSIPCO-80 Conf., Lausanne, September 1980) eds. M. Kunt and F. De Coulon (North-Holland, Amsterdam) pp. 787–792. 1981Google Scholar
  74. Flandrin, P., and B. Escudié, “Géometrie des fonctions d’ambiguité et des représentations conjointes de Ville: l’approche de la théorie des catastrophes, 8ème Coll. GRETSI, pp. 69–74, Nice (1981). 1981Google Scholar
  75. Flandrin, P., B. Escudié, J. Gréa and Y. Biraud, Joint representation and Hilbertian analysis: “elementary” and “asymptotic” finite energy signals, Proc. EUSIPCO-80 Conf., Lausanne (1980), eds. M. Kunt and F. de Coulon ( North-Holland, Amsterdam ) pp. 25–26. 1981Google Scholar
  76. Grace, O.D., Instantaneous power spectra, J. Acoust. Soc. Amer. 69 (1), 191–198. 1981Google Scholar
  77. Janssen, A.J.E.M., Positivity of weighted Wigner distributions, SIAM J. Math. Anal. 12 (5). 752–758. 1981MathSciNetMATHGoogle Scholar
  78. Priestly, M.B., Spectral analysis and time series, Vols. I and II (Academic Press, New York). 1981Google Scholar
  79. Szu, H.H., and J.A. Blodgett, Wigner distribution and ambiguity function. in: Optics in Four Dimensions, ed. L.M. Narducci ( American Institute of Physics. New York ) pp. 355–381. 1981Google Scholar
  80. Bouachache. B., Représentation temps—fréquence — Application à la mesure de l’absorption du sous-sol, Thèse D. I. (INPG, Grenoble). 1982Google Scholar
  81. Bouachache, B., and P. Flandrin, Wigner—Ville analysis of time-varying signals. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP82, Paris. France (May 1982) pp. 1329–1333. 1982Google Scholar
  82. Chan. D.S.K., A non-aliased discrete-time Wigner distribution for time—frequency signal analysis. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing. ICASSP82. Paris, France (May 1982) pp. 1333–1336. 1982Google Scholar
  83. Chester. D.B., The Wigner distribution and its application to speech recognition and analysis. Ph.D. Dissertation (University of Cincinnati, OH). 1982Google Scholar
  84. Flandrin. P., Représentation des signaux dans le plan temps—fréquence. Thèse D. I. (Grenoble). 1982Google Scholar
  85. Flandrin, P., and B. Escudié, Sur la localisation des représentations conjointes dans le plan temps—fréquence, C. R. Acad. Sci. Paris, série I 295(7), 475–478, presented by A. Blanc-Lapierre. 1982Google Scholar
  86. Flandrin, P., B. Escudié and J. Gréa, Applications of operators and deformation techniques to time—frequency problems, IEEE ISIT, Les Arcs. 1982.Google Scholar
  87. Jacobson, L., and H. Wechsler, A paradigm for invariant object recognition of brightness. optical flow and binocular disparity images, Pattern Recognition Lett. 1. 61–68. 1982CrossRefGoogle Scholar
  88. Jacobson, L., and H. Wechsler, The Wigner distribution and its usefulness for 2-D image processing, Sixth Int. Joint Conference on Pattern Recognition, Munich, FRG (October 19–22, 1982 ).Google Scholar
  89. Janssen, A.J.E.M., On the locus and spread of pseudo-density functions in the time-frequency plane, Philips J. Res. 37, 79–110.Google Scholar
  90. Martin, W., Time-frequency analysis of non-stationary processes, IEEE-ISIT, Les Arcs, 1982.Google Scholar
  91. Martin, W.. Time-frequency analysis of random signals, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP82, Paris, France (May 1982) pp. 1325–1328.Google Scholar
  92. Nawab, S.H., T.F. Quatieri and J.S. Lim, Signal reconstruction from short-time Fourier transform magnitude, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP82, Paris, France (May 1982) pp. 1046–1048.Google Scholar
  93. Szu, H.H. Two-dimensional optical processing of one-dimensional acoustic data, Opt. Eng. 21. 804–813. 1982Google Scholar
  94. Bastiaans, M.J., Signal description by means of a local frequency spectrum, doctoral thesis (Technical University, Eindhoven, The Netherlands ). 1983Google Scholar
  95. Bouachache, B., Wigner-Ville analysis of time-varying signals: an application in seismic prospecting, EUSIPCO-83: Second European Association for Signal Processing Conference, Erlangen, FRG (September 12–16, 1983 ).Google Scholar
  96. Boudreaux-Bartels, G.F., Time-frequency signal processing algorithms: analysis and synthesis using Wigner distributions. Ph.D. Dissertation (Rice University, Houston. TX). 1983Google Scholar
  97. Boudreaux-Bartels. G.F., and T.W. Parks. Reducing aliasing in the Wigner distribution using implicit spline interpolation, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP83, Boston, MA (April 1983) pp. 1438–1441.Google Scholar
  98. Brenner, K.H., A discrete version of the Wigner distribution function, EUSIPCO-83. Second European Association for Signal Processing Conference, Erlangen, FRG (September 12–16, 1983 ).Google Scholar
  99. Chester, D.. F. Taylor and M. Doyle, On the Wigner distribution, Proc. IEEE Int. Conf. on Acoustics. Speech and Signal Processing ICASSP83, Boston. MA (April 1983) Vol. 2. pp. 491–494.Google Scholar
  100. Chester, D., F.J. Taylor and M. Doyle, Application of the Wigner distribution to speech processing, IEEE Acoustics. Speech and Signal Processing, Spectrum Estimation Workshop II. Tampa. Florida (November 10–11. 1983 ) pp. 98–102.Google Scholar
  101. Claasen. T.A.C.M.. and W.F.G. Mecklenbräuker, The aliasing problem in discrete-time Wigner distributions. IEEE Trans. Acoust., Speech Signal Process. ASSP-31. 1067–1072. 1983Google Scholar
  102. Flandrin. P., and W. Martin, Sur les conditions physiques assurant l’unicité de la représentation de Wigner-Ville comme représentation temps-fréquence, Neuvième Colloque sur là Traitement du Signal et ses Applications, pp. 43–49 (May 1983).Google Scholar
  103. Flandrin. P.. and W. Martin, Pseudo-Wigner estimators, IEEE ASSP Spectrum Estimation Workshop II, Tampa, Florida (November 10–11, 1983 ) pp. 181–185.Google Scholar
  104. Grenier. Y., Time-dependent ARMA modeling of non-stationary signals, IEEE Trans. Acoust. Speech Signal Process. ASSP-31, pp. 899–911. 1983Google Scholar
  105. Grenier, Y., and D. Aboutajdine, Comparison des représentations temps—fréquence de signaux présentant des discontinuités spectrales, Ann. Telecom. 38(11–12), 429–442.Google Scholar
  106. Griffin, D.W. and J.S., Lim, Signal estimation from modified short-time Fourier transform, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP83, Boston, MA (April 1983) pp. 804–807.Google Scholar
  107. Jacobson, L., and H. Wechsler, The composite pseudo Wigner distribution (CPWD): A computable and versatile approximation to the Wigner distribution (WD), Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP83, Boston, MA (April 1983) pp. 254–256.Google Scholar
  108. Janse, C.P. and A.J.M. Kaizer, Time—frequency distributions of loudspeakers: the application of the Wigner distribution, J. Audio Eng. Soc. 31(4), 198–223.Google Scholar
  109. Kraus, G., Eine Systematik der linearen, bilinearen und quadratischen Analyse deterministischer Signale, Arch. Elektron. Uebertragungstech. 37, Heft 5/6, 160–164.Google Scholar
  110. Martin, W., and P. Flandrin, Analysis of non-stationary processes: short-time periodo- grams versus a pseudo-Wigner estimator, EUSIPCO’83, ( North-Holland, Amsterdam ). 1983Google Scholar
  111. Nawab, S.H., T.F. Quatieri and J.S. Lim, Algorithms for signal reconstruction from short-time Fourier transform magnitude, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP83, Boston, MA (April 1983) pp. 800–803.Google Scholar
  112. O’Connell, R.F., The Wigner distribution function — 50th birthday, Found. Phys. 13 (1), 83–92. 1983Google Scholar
  113. Taylor, F., M. Doyle and D. Chester, On the Wigner distribution, Proc. IEEE Im. Conf. on Acoustics, Speech and Signal Processing ICASSP83, Boston, MA (April 1983) pp. 491–494.Google Scholar
  114. Auslander. L., and R. Rolimieri, Characterizing the radar ambiguity functions, IEEE Trans. Inf. Theory IT-30(6), 832–836. 1984Google Scholar
  115. Bouachache. B., and F. Rodriguez. Recognition of time-varying signals in the time—frequency domain by means of the Wigner distribution, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP84, San Diego, CA (March 1984) pp. 22.5.1–22. 5. 4. 1984Google Scholar
  116. Boudreaux-Bartels, G.F., and T.W. Parks, Signal estimation using modified Wigner distributions, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP84, San Diego, CA (March 1984).Google Scholar
  117. Brud, B.R., and T.E. Posch, A range and azimuth estimator based on forming the spatial Wigner distribution, Proc. IEEE Im. Conf. on Acoustics, Speech and Signal Processing ICASSP84, San Diego, CA (March 1984) pp. 41.B.9.1–41.B. 9. 2.Google Scholar
  118. Chester, D., F.J. Taylor and M. Doyle, The Wigner distribution in speech processing applications, J. Franklin Inst. 318(6), 415–430.Google Scholar
  119. Claasen, T.A.C.M., and W.F.G. Mecklenbräuker, On the time—frequency discrimination of energy distributions: can they look sharper than Heisenberg?, Proc. IEEE Im. Conf. on Acoustics, Speech and Signal Processing ICASSP84, San Diego, CA (March 1984) pp. 41.B.7.1–41.B. 7. 4.Google Scholar
  120. Cohen, L., Distributions in signal theory, Proc. IEEE Int. Conf. on Acoustics. Speech and Signal Processing ICASSP84, San Diego, CA (March 1984) pp. 41.B.1.1–41.B. 1. 4.Google Scholar
  121. Escudié, B., and J. Gréa, Joint representation (JR) in signal theory (ST) and Hilbertian analysis: a powerful tool for signal analysis, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP84, San Diego, CA (March 1984) pp. 41.B.6.1–41.B. 6. 4.Google Scholar
  122. Flandrin, P., Some features of time-frequency representations of multicomponent signals, IEEE ICASSP84, San Diego (1984) pp. 41.B.4.1–41.B. 4. 4.Google Scholar
  123. Flandrin, P., and B. Escudié, An interpretation of the pseudo-Wigner-Ville distribution, Signal Process 6(1), 27–36.Google Scholar
  124. Flandrin, P., and W. Martin, A general class of estimators for the Wigner-Ville spectrum of non-stationary processes, in: Lectures. Notes in Control and Information Sciences, Vol. 62, Analysis and Optimization of Systems (Springer-Verlag, Heidelberg) pp. 15–23. 1984Google Scholar
  125. Flandrin, P., W. Martin and M. Zakharia, On a hardware implementation of the Wigner-Ville transform, in: Digital Signal Processing-84, eds. V. Cappellini and A.G. Constantinides (North-Holland, Amsterdam) pp. 262–266. 1984Google Scholar
  126. Grenier, Y., Modélisation de signaux non-stationnaires, Thèse (Université de Paris-Sud). 1984Google Scholar
  127. Hillery, M., R.F. O’Connell, M.O. Scully and E.P. Wigner, Distribution functions in physics: fundamentals, Phys. Rep. 106 (3), 123–167. 1984MathSciNetGoogle Scholar
  128. Hlawatsch, F., PseudoWignerverteilung modulierter Schwingungen, Fünfter Aachener Kolloquium, ( Aachen, 1984 ) S. 344–347.Google Scholar
  129. Hlawatsch, F., Interference terms in the Wigner distribution, in: Digital Signal Processing-84, eds. V. Cappellini and A.G. Constantinides (North-Holland, Amsterdam) pp. 363–367. 1984Google Scholar
  130. Janssen, A.J.E.M., Positivity properties of phase-space distribution function, J. Math. Phys. 25 (7), 2240–2252. 1984MathSciNetCrossRefGoogle Scholar
  131. Janssen, A.J.E.M., A note on Hudson’s theorem about functions with nonnegative Wigner distributions. SIAM J. Math. Anal. 15 (1), 170–176. 1984MathSciNetMATHGoogle Scholar
  132. Janssen, A.J.E.M.. Gabor representations and Wigner distribution of signals, Proc. IEEE Int. Conf. on Acoustics. Speech and Signal Processing ICASSP84, San Diego, CA (1984) pp. 41.B.2.1–41.B. 2. 4. 1984Google Scholar
  133. Kumar, B.V.K.V., and C.W. Carroll, Performance of Wigner distribution function based detection methods, Opt. Eng. 23 (6), 732–737. 1984Google Scholar
  134. Marinovic, N.M.. and W.A. Smith, Use of the Wigner distribution to analyse the time-frequency response of ultrasonic transducers, IEEE Ultrasonics Symposium. Dallas, TX (1984).Google Scholar
  135. Martin. N., Développement de méthodes d’analyse spectrale autoregressive, Applications a des signaux réels non-stationnaires ou a N dimensions, Thèse D. I. (INPG, Grenoble) 1984Google Scholar
  136. Martin, W., Measuring the degree of non-stationarity by using the Wigner-Ville spectrum, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP84. San Diego, CA (1984) pp. 41.B.3.1–41.B. 3. 4.Google Scholar
  137. Martin, W., Spectral analysis of nonstationary processes. Sixth Int. Conf. on Analysis and Optimisation of Systems (special session on nonstationary processes), Nice. France (June 1984).Google Scholar
  138. Martin. W., Wigner-Ville-Spektralanalyse nichtstationärer Prozesse. Theorie und Anwendung in biologischen Fragestellungen, Habilitationsschrift (Universität Bonn).Google Scholar
  139. Riley, M.D., Detecting time-varying spectral energy concentrations, IEEE Digital Signal Processing Workshop, Chatham (1984) pp. 5.6.1–5. 6. 2.Google Scholar
  140. Schempp, W., Radar ambiguity functions, nilpotent harmonic analysis, and holomorphic theta series. Special Functions: Group Theoretical Aspects and Applications. eds. R.A. Askey et al., pp. 217–260. 1984Google Scholar
  141. Subotic, N., and B.E.A. Salek, Generation of the Wigner distribution function of twodimensional signals by a parallel optical processor, Opt. Lett. 9 (10), 471–473. 1984CrossRefGoogle Scholar
  142. Szu, H.H., and H.J. Caulfield, The mutual time-frequency content of two signals. Proc. IEEE 72 (7), 902–908. 1984CrossRefGoogle Scholar
  143. Boashash, B., On the anti-aliasing and computational properties of the Wigner—Ville distribution, Int. Symp. on Applied Signal Processing and Digital Filtering IASTED85, Paris, (June 1985) ed. M.H. Hamza ( Acta Press, Anaheim ). 1985Google Scholar
  144. Chester, D., and J. Wilbur, Time and spatial varying CAM and AI signal analysis using the Wigner distribution, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP85, Tampa. FL (1985) pp. 1045–1048. 1985CrossRefGoogle Scholar
  145. Cohen, L., Properties of the positive time—frequency distribution functions, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP85, Tampa, FL (1985) pp. 548–551. 1985CrossRefGoogle Scholar
  146. Cohen, L., Positive and negative joint quantum distributions, in: Non-equilibrium Quantum Statistical Physics, eds. J. Moore and M.O. Scully, 1985.Google Scholar
  147. Cohen, L., and T. Posch, Positive time—frequency distribution functions, IEEE Trans. Acoust. Speech Signal Process. ASSP-33, 31–38. 1985Google Scholar
  148. Flandrin, P., Séparation de fréquences modulées proches par analyse de Wigner—Ville autoregressive, 106 Coll. Traitement du Signal GRETSI, Nice, France (May 1985). 1985Google Scholar
  149. Flandrin, P., and B. Escudié, Principe et mise en oeuvre de l’analyse temps—fréquence par transformation de Wigner—Ville, Traitement du Signal, GRETSI, Nice, France. 1985Google Scholar
  150. Flandrin, P.. B. Escudié and W. Martin, Représentations temps—fréquence et causalité. Coll. GRETSI-85, Nice, France (May 1985).Google Scholar
  151. Friedman, D.H., Instantaneous-frequency distribution vs. time: an interpretation of the phase structure of speech, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP85, Tampa. FL (1985) pp. 1121–1124. 1985CrossRefGoogle Scholar
  152. Garudadri, H., M.P. Beddoes, J.H.V. Gilbert and A.-P. Benguered, Identification of invariant acoustic cues in stop consonants using the Wigner distribution, Int. Symp. on Applied Signal Processing and Digital Filtering IASTED85, Paris (June 1985) ed. M.H. Hamza ( Acta Press, Anaheim ) pp. 196–200. 1985Google Scholar
  153. Hammond. J., and R. Harrison, Wigner—Ville and evolutionary spectra for covariant equivalent nonstationary random processes. Proc. IEEE Int. Conf. on Acoustics. Speech and Signal Processing ICASSP85, Tampa. FL (1985) pp. 1025–1028.Google Scholar
  154. Hlawatsch, F., Transformation, inversion and conversion of bilinear signal representations. Proc. IEEE Int. Conf. on Acoustics. Speech and Signal Processing ICASSP85. Tampa. FL (1985) pp. 1029–1032.Google Scholar
  155. Hlawatsch. F., Duality of time—frequency signal representations: energy density domain and correlation domain. Int. Symp. on Applied Signal Processing and Digital Filtering. IASTED85. Paris (June 1985) ed. M.H. Hamza (Acta Press, Anaheim).Google Scholar
  156. Hlawatsch. F.. Notes on bilinear time—frequency signal representations. Institutsbericht ( Institut für Nachrichten-technik. Technische Universität Wien ). 1985Google Scholar
  157. Kay, S., and G. Boudreaux-Bartels. On the optimality of the Wigner distribution for detection. Proc. IEEE Int. Conf. on Acoustics. Speech and Signal Processing ICASSP85. Tampa. FL (1985) pp. 1017–1020.Google Scholar
  158. Marinovic. N.M., and G. Eichmann. An expansion of Wigner distribution and its applications. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP85. Tampa. FL (1985) pp. 1021–1024.Google Scholar
  159. Martin, W.. and P. Flandrin. Detection of changes of signal structure by using the Wigner—Ville spectrum, Signal Process. 8, 215–233.Google Scholar
  160. Yu, K., and S. Cheng, Signal synthesis from Wigner distribution, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing ICASSP85, Tampa, FL (1985) pp. 1037–1040.Google Scholar

Copyright information

© Springer-Verlag Wien 1989

Authors and Affiliations

  • W. Mecklenbräuker
    • 1
  1. 1.Technical University of ViennaViennaAustria

Personalised recommendations