Elastoplastic Analysis of Skeletal Structures

  • J. A. Teixeira de Freitas
Part of the International Centre for Mechanical Sciences book series (CISM, volume 299)


A unified finite element formulation for the elastoplastic analysis of skeletal structures is presented. Parametric expressions are used to describe not only the element displacement field but also the stress-resultant distribution, in both mesh and nodal representations. A finite element description, in terms of stress, strain and plastic multipliers, is incorporated to model the cross-sectional behaviour of the constitutive building elements. The ensuing formulation is encoded to perform both elastoplastic deformation and incremental analyses.


Skeletal Structure Elastoplastic Analysis Plastic Multiplier Mathematical Programming Method Mesh Description 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zienkiewicz, O.C., R. Valliapans and I.P. King: Elastoplastic solutions of engineering problems, initial stress, finite element approach, Int. J. Num. Meth. Engrg., 1, 1969Google Scholar
  2. 2.
    Argyris, J.H.: Methods of elastoplastic analysis, J. Appl. Math. Phys., 23, 1972Google Scholar
  3. 3.
    Maier, G.: Mathematical programming methods in structural analysis, Int. Conf. Variational Meth. Engrg. Univ. of Southampton, 1972Google Scholar
  4. 4.
    Cohn, M.Z. and G. Maier (Eds): Engineering Plasticity by Mathematical Programming, Pergamon, 1979Google Scholar
  5. 5.
    Smith, D.L. and J. Munro: On uniqueness in the elastoplastic analysis of frames, J. Struc. Mech., 6, 1978Google Scholar
  6. 6.
    Smith, D.L.: Plastic limit analysis and synthesis of frames by linear programming, Ph.D. Thesis, Univ. of London, 1974Google Scholar
  7. 7.
    Munro, J. and D.L. Smith: Linear programming duality in plastic analysis and synthesis, Int. Symp. Computer Aided Design, Univ. of Warwick,1972Google Scholar
  8. 8.
    Freitas, J.A.T.: Elastic-plastic analysis of structural cross-sections, Mathematical Programming Methods in Structural Plasticity, CISM, Udine, 1986Google Scholar
  9. 9.
    Corradi, L. and C. Poggi: A refined finite element model for the analysis of elastic-plastic framesGoogle Scholar
  10. 10.
    Freitas, J.A.T. and J.P.B.M. Almeida: A direct flexibility approach to the force method of structural analysis, EPMESC, Macao, 1985Google Scholar
  11. 11.
    Haar, A. and T. von Karman: Zur Theorie der Spannungszustande in Plastichen und Sandartigen Medien, Nach der Wissenschaften zu Gottingen, 204–18, 1909Google Scholar
  12. 12.
    Kachanov, L.M.: Variational principles for elastoplastic solids, Prikl. Math. Mekh., 6, 1942Google Scholar
  13. 13.
    Hodge, P.G.: The mathematical theory of plasticity, Surveys in Applied Mathematics, Wiley, 1958MATHGoogle Scholar
  14. 14.
    Maier, G.: A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, 5, 1970Google Scholar
  15. 15.
    Friedrichs, K.O.: Ein Verfahren der Variations rechnung das Minimum eines Integrals als das Maximum eines anderen Ausdruckes darzustellen, Nach. der Akademic der Wissenschaften in Gottigen, 13, 1929Google Scholar
  16. 16.
    Kirchhoff, G.: Uber das Gluchgenicht und die Bewegung einer Elastischen Schiebe, Creller J., 40, 1850Google Scholar
  17. 17.
    Colonnetti, G.: Elastic equilibrium in the presence of permanent set, O. Appl. Math., 7, 1950Google Scholar
  18. 18.
    Ceradini, G.: A maximum principle for the analysis of elastic plastic systems, Meccanica, 1, 1966Google Scholar
  19. 19.
    Greenberg, H.J.: On the variational principles of plasticity, Brown Univ., O.N.R. Report NR-041–032, 1949Google Scholar
  20. 20.
    Maier, G., D.E. Grierson and M.J. Best: Mathematical programming methods for deformation analysis at plastic collapse, Computers and Struc., 7, 1977Google Scholar
  21. 21.
    Wolfe, P.: - The simplex method for quadratic programming Econometrica, 27, 1959Google Scholar
  22. 22.
    Lemke, C.E.: Bimatrix equilibrium points and mathematical programming, Management Sci., 11, 1965Google Scholar
  23. 23.
    Cottle, R.W.: The principal pivoting method of quadratic programming, Linear Algebra and its Applications, 1, 1968Google Scholar
  24. 24.
    Smith, D.L. and J.A.S. Appleton: A mathematic programming model for some problems in plasticity, Proc. Int. Conf. Applied Numeric Modelling, E. Alarcon and C.A.Brebbia (Eds), Pentech, London, 1979Google Scholar
  25. 25.
    Franchi, A. and M.Z. Cohn: Computer analysis of elastic-plastic structures, Comp. Meth. Appl. Mech. Eng., 21, 1980Google Scholar
  26. 26.
    De Donato, O. and A. Franchi: A modified gradient method for finite element elastoplastic analysis by quadratic programming, Comp. Meth. Appl. Mech. Eng., 2, 1973Google Scholar
  27. 27.
    Freitas, J.A.T. and J.P.B.M. Almeida: A nonlinear projection method for constrained optimization, Civ. Engng. Syst., 1, 1984Google Scholar
  28. 28.
    De Donato, O. and G. Maier: Historical deformation analysis of elastoplastic structures as a parametric linear complementarity problem, Meccanica, 11, 1976Google Scholar
  29. 29.
    De Donato, O. and G. Maier: Local unloading in piecewise-linear plasticity, I.Engrg. Mech. Div. Proc. ASCE, 102, 1976Google Scholar
  30. 30.
    Smith, D.L.: The Wolfe-Markowitz algorithm for nonholonomic elastoplastic analysis, Engrg. Struct., 1, 1978Google Scholar
  31. 31.
    Maier, G., S. Giacomini and F. Paterlini: Combined elastoplastic and limit analysis via restricted bases linear programming, Comp. Meth. Appl. Mech. Eng., 19. 1979Google Scholar
  32. 32.
    Freitas, J.A.T. and D.L. Smith: Plastic straining, unstressing and branching in large displacement perturbation analysis, Int. J. Num. Meth. Engrg., 20, 1984Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • J. A. Teixeira de Freitas
    • 1
  1. 1.Istituto Superior TecnicoLisbonPortugal

Personalised recommendations