Elastic-Plastic Analysis of Structural Cross-Sections

  • J. A. Teixeira de Freitas
Part of the International Centre for Mechanical Sciences book series (CISM, volume 299)


The structural cross-section is interpreted as an assembly of finite elements. General stress and strain functions are used to model multi-axial states and to generate consistent formulations for the fundamental conditions of equilibrium, compatibility and elastoplasticity. The characterization of limit states is encoded by linear {quadratic} programming problems for structural materials exhibiting unbounded {bounded} yield plateaux. An incremental procedure is used to trace the pre- and post-collapse response of the cross-section under analysis.


Yield Surface Linear Complementarity Problem Stress Mode Dual Transformation Concrete Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ravier, C.L.M.H.: Résumé des leçons données à l’École des Ponts et Chaussées, 3rd Ed., Paris, 1864, with notes and appendices by B. de Saint-Venant.Google Scholar
  2. 2.
    Ewing, J.A.: The Strength of Materials, Cambridge, 1899.Google Scholar
  3. 3.
    Girkmann, K.: Bemessung von Rahmentragwerken unter Zugrundelegung eines ideal-plastichen Stahles, Sitzungsberichte der Akademie der Wissenschaften in Wien, Abt. IIa, 140, 1931.Google Scholar
  4. 4.
    Brown, E.H.: Plastic asymmetrical bending of beams, Int. L Mech. Sci., 9.Google Scholar
  5. 5.
    Hill, R. and M.P.L. Siebel: On combined bending arid twisting of thin tubes in the plastic range, Phil. Magazine, 42, 1951.Google Scholar
  6. 6.
    Hill, R. and M.P.L. Siebel: On the plastic distorsion of solid bars by combined bending and twisting, J. Mech. Physics of Solids, 1, 1953.Google Scholar
  7. 7.
    Drucker, D.C.: The effect of shear on the plastic bending of beams, J. Appl. Mech., 23, Trans. ASME, 1956Google Scholar
  8. 8.
    Hodge, P.G.: Interaction diagrams for shear and bending of plastic beams, J. Appl. Mech., Trans ASME, 1957.Google Scholar
  9. 9.
    Caydon, F.A. and H. Nuttal: On the combined bending and twisting of beams of various sections, J. Mech. Physics of Solids, 6, 1957Google Scholar
  10. 10.
    Neal, B.G.: The effect of shear and normal forces on the fully plastic moment of a beam of rectangular cross section, J. Appl. Mech., 28, Trans. ASME. 1961Google Scholar
  11. 11.
    Boulton, N.S.: Plastic twisting and bending of an I-beam in which the warp is restricted, Int. J. Mech. Sci., 4. 1962Google Scholar
  12. 12.
    Heyman, J.: The simple plastic bending of beams, Proc. Inst. Cor. Engrs.. 41, 1968.Google Scholar
  13. 13.
    Morris, G.A. and S.J. Fenves: Approximate yield surface equations, J. Engrg. Mech. Div., Proc ASCE, 95, 1969Google Scholar
  14. 14.
    Lescouarch, Y.: Resistence of a cross section submitted to various types of stresses, Construction Metallique, 14, 1977Google Scholar
  15. 15.
    Rafagofalan, K.S.: Combined torsion, bending and shear on L-beams, J. Struct. Div., Proc. ASCE, 106, 1980.Google Scholar
  16. 16.
    Szuladzinski, G.: Bending of beams with nonlinear material characteristics, J. Mech. Design, Trans ASME, 102, 1980Google Scholar
  17. 17.
    Benson, R.C.: Nonlinear bending and collapse of long, thin, open section beams and corrugated panels, J. Appl. Mech. Dev., University of Waterloo, 1973Google Scholar
  18. 18.
    Cohn, M.Z. (Ed.): Nonlinearity and continuity in prestress concrete, Univ. of Waterloo, 19, 1983Google Scholar
  19. 19.
    Chakraborty, M.: Ultimate strength of reinforced concrete rectangular beams under combined torsion - A critical review, I. Inst. Engineers (India) Civ. Engrg. Div., 60, 1980Google Scholar
  20. 20.
    Lachance, L.: Stress distribution in reinforced concrete sections subjected to biaxial bending, J. Am. Concrete Inst., 2, 1980Google Scholar
  21. 21.
    Sakai, K.: Moment-curvature relationship of reinforced concrete members subjected to combined bending and axial force, J. Am. Concrete Inst., 3, 1980.Google Scholar
  22. 22.
    Sharma, A.: Tests on concrete beams in biaxial bending, axial compression and torsion, Inst. Civ. Engineers, Proc, Research and Theory, 75, 1983Google Scholar
  23. 23.
    Mansur, M.A.: Combined bending and torsion in reinforced concrete beams with rectangular openings, Conc. Int. Design and Construction, 5, 1983Google Scholar
  24. 24.
    Rotter, J.M. and P. Ansourian: Cross section behaviour and ductility in composite beams, Inst. Civ. Engineers, Proc., Research and Theory, 67, 1979Google Scholar
  25. 25.
    Al-Noury, S.I.: Behaviour and design of reinforced and composite concrete sections, J. Struct. Div., Proc. ASCE, 108, 1982.Google Scholar
  26. 26.
    Lachance, L.: Ultimate strength of biaxially loaded composite sections, J.Div., Proc. ASCE, 108, 1982Google Scholar
  27. 27.
    Brondum-Nielsen, T.: Ultimate flexural capacity of partially or fully prestressed cracked arbitrarily concrete sections under axial load combined with biaxial bending, Conc. Int. Design and Construction, 5, 1983Google Scholar
  28. 28.
    Chushkewich, K.W.: Simplified cracked section analysis, J. Am. Concrete Inst., 80, 1983Google Scholar
  29. 29.
    Abdel-Baset, S.B.: Limit analysis of skeletal structures under combined stresses, Ph. D. Thesis, Univ. of Waterloo, 1976Google Scholar
  30. 30.
    Grierson, D.E. and S.B. Abdel-Baset: Plastic analysis under combined stresses, J. Engrg. Mech. Div., Proc. ASCE, 103, 1977.Google Scholar
  31. 31.
    Appleton, J.A.S.: Elastoplastic analysis of skeletal structures by mathematical programming, Ph. D. Thesis, Univ. of London, 1979.Google Scholar
  32. 32.
    Smith, D.L. and J.A.S. Appleton: A mathematical programming model for some problems in structural plasticity, 2nd Int. Conf, Applied Numerical Modelling, Madrid, 1978Google Scholar
  33. 33.
    Sacchi, P.L. and A. Tralli: A discrete model for the plastic analysis of thin walled beams of open cross section, J. Struct. Mech., 8, 1980.Google Scholar
  34. 34.
    Nadai, A.: Theory of Flow and Fracture of Solids, McGraw-Hill, 2nd edition,1950Google Scholar
  35. 35.
    Munro, J. and D.L. Smith: Linear programming duality in plastic analysis and synthesis, Int. Symp. Computer Aided Design, Univ. of Warwick, 1972.Google Scholar
  36. 36.
    Argyris, J.H. and S. Kelsey: Energy Theorems and Structural Analysis, Butterworth, 1960.Google Scholar
  37. 37.
    Freitas, J.A.T.: Piecewise linear elastic-plastic stress-strain relations, Mathematical Programming Methods in Structural Plasticity, CISM, Udine, 1986Google Scholar
  38. 38.
    Gvozdev, A.A.: The determination of the value of the collapse load for statically indeterminate systems undergoing plastic deformation,Proc.Conf. Plastic Deformations, Akad. Nauk. SSRC, Moscow,1936 (English Trans. in Int. J. Mech. Sci., 1 )Google Scholar
  39. 39.
    Freitas, J.A.T.: An efficient simplex method for the limit analysis of structures, Computers and Struct., 21, 1985Google Scholar
  40. 40.
    Freitas, J.A.T. and D.L. Smith: Plastic straining, unstressing and branching in large displacement perturbation analysis, Int. J. Num. Meth. Engrg., 20, 1984Google Scholar
  41. 41.
    Freitas, J.A.T. and J.P.B.M. Almeida: A nonlinear projection method for constrained optimization, Civ. Engrg. Syst., 1, 1984Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • J. A. Teixeira de Freitas
    • 1
  1. 1.Istituto Superior TecnicoLisbonPortugal

Personalised recommendations