Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 299))

  • 297 Accesses

Abstract

A matrix description for piecewise-linear models of inviscid. isothermal plastic behaviour is presented. A geometric interpretation of the plasticity conditions is used to illustrate the role of the intervening constitutive operators. A matrix description for incremental elastic-plastic stress-strain relations is presented and processed next through mathematical programming theory to illustrate its capacity for generating variational interpretations and statements of qualification regarding the existence, uniqueness and stability of elastoplastic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cauchy, A.: Recherches sur l’équilibre et le mouvement interieur des corps solides ou fluides, élastiques ou non élastiques, Bull. Soc. Philomatique, p 9–13, Paris, 1823

    Google Scholar 

  2. Tresca, H.: Mémoire sur l’écoulement des corps solides soumis à des fortes pressions, Compte-Rendu, 59, Paris, 1864

    Google Scholar 

  3. Guest, J.J.: On the strength of ductile materials under combined stress, Phil. Magazine, 50, 1900

    Google Scholar 

  4. Nguyen Dang Hung: Sur la plasticité et le calcul des états limites par éléments finis, Thése de Doctorat spécial, Univ. de Liège, 1985

    Google Scholar 

  5. Drucker, D.C.: Basic concepts in plasticity, Handbook of Engrg. Mech., W. Flügge, ( Ed. ), McGraw-Hill, 1962

    Google Scholar 

  6. Ilyushin, A.A.: On the foundations of the general mathematical theory of plasticity, Voprosy Teorii Plastichnosti, AN SSR, Moscow, 1961

    Google Scholar 

  7. Zyczkowsky, M.: Combined loadings in the theory of plasticity, Polish-Scientific Publ., 1981

    Google Scholar 

  8. Maier, G.: Some theorems for plastic strain rates and plastic strains, J. Mécanique, 8, 1969

    Google Scholar 

  9. Maier, G.: “Linear” flow-laws of elastoplasticity: a unified general approach, Accad. Naz. Lincei, VII, 47, 1969

    Google Scholar 

  10. Maier, G.: A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, 5, 1970

    Google Scholar 

  11. De Donato, O.: On piecewise-linear constitutive laws in plasticity, Tech. Rept. ISTC, 1974

    Google Scholar 

  12. Koiter, W.T.: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with singular yield surfaces, Quart. Appl. Math., 11, 1953

    Google Scholar 

  13. Phillips, A. and C.W. Lee: Yield surfaces and loading surfaces. Experiments and recommendations, Int. J. Solids Struct., 15, 1979

    Google Scholar 

  14. Cohn, M.Z.(Ed.): Inelasticity and non-linearity in structural concrete. Study No. 8, Solid. Mech. Div., University of Waterloo, 1973

    Google Scholar 

  15. Rees, D.W.A.: A review of stress-strain paths and constitutive relations in the plastic range, J. Strain Analysis for Engrg. Design, 16, 1981

    Google Scholar 

  16. Ramberg, W. and W.R. Osgood: Description of stress-strain curves by three parameters, NACA, TN 902, 1943

    Google Scholar 

  17. Margetton, J.: Tensile stress-strain characterization of nonlinear materials, J. Strain Analysis for Engrg. Design, 16, 1981

    Google Scholar 

  18. Sargin, M.: Stress-strain relationships for concrete and the analysis of structural concrete sections, Study No. 4, SMD, Univ. of Waterloo, 1971

    Google Scholar 

  19. C.E.B.- F.I.P. - Model code for concrete structures, Comité Euro-International du Béton, 1978

    Google Scholar 

  20. Murray, D.W. and L. Chitnuyanondh: Concrete plasticity theory for biaxial stress analysis, J. Engrg. Mech. Div., Proc. ASCE, 105, 1979

    Google Scholar 

  21. Brazant, Z.P. and S.S. Kim: Plastic-fracturing theory for concrete, J. Engrg. Mech. Div., Proc. ASCE, 105, 1979

    Google Scholar 

  22. Smith, D.L.: Plastic limit analysis and synthesis of frames by linear programming, PhD Thesis, Univ. of London, 1974

    Google Scholar 

  23. Von Mises, R.: Mechanik der plastichen Formänderung von Kristallen,ZAMM, 8, 1928

    Google Scholar 

  24. Melan, L.: Zur Plastizität der raümlichen kontinuums, Ing. Archiv., 9, 1938

    Google Scholar 

  25. Mröz, Z.: On forms of constitutive laws for elastic-plastic solids, Arch. Mech. Stosow., I, 13, 1966

    Google Scholar 

  26. Schereyer, H.L.: A third-invariant plasticity theory for frictional materials, J. Struct. Mech., 11, 1983

    Google Scholar 

  27. Hodge, P.G.: The theory of piecewise-linear isotropic plasticity, IUTAM Colloquium, Madrid, 1955

    Google Scholar 

  28. Berman, J. and P.G. Hodge: A general theory of piecewise linear plasticity for initially anisotropic materials, Arch. Mech. Stosow., XI, 5, 1959

    MathSciNet  Google Scholar 

  29. De Saint-Venant, B.: Mémoire sur l’établissement des équations différentielles des mouvements intérieures opérés dans les corps solides ductiles au-deli des limites oú l’élasticité pourrait les ramener à leur premier état. Compte-Rendu 70, Paris, 1870

    Google Scholar 

  30. Von Mises, R.: Mechanik der festen Körper in plastich deformablen Zustent, Nach. Math. Phys., KL, 1913

    Google Scholar 

  31. Hencky, H.: Zur Theorie plastischer Deformationem und der Hiedurch im Material hervargerufenem nachspannungen, ZAMM, 4, 1924

    Google Scholar 

  32. Hosford, W.F.: A generalized isotropic yield criterion, Trans ASME, E39, 3, 1972

    Google Scholar 

  33. Mohr, O.: Welche Umstände belingen die Elastizitatsrenze und den Bruch einess Materials, Verein Deutscher Ingenieure, Düsseldorf, 44, 45, 1900, 1901

    Google Scholar 

  34. Mohr, O.: Abhandlungen aus dem Gebiete der Technischen Mechanik, Auflage, Ernest und Solin, Berlin, 1914

    Google Scholar 

  35. Drucker, D.C. and W. Prager: Soil mechanics and plastic analysis or limit design, Aust. Appl. Math., 10, 1952

    Google Scholar 

  36. Drucker, D.C.: Some implications of workhardening and ideal plasticity, Quart. Appt Maths, 7, 1950

    Google Scholar 

  37. Drucker, D.C.: A definition of stable inelastic materials, Trans ASME, J. Appl. Mech., 101, 1959

    Google Scholar 

  38. Ilyushin, A.A.: On the postulate of plasticity, Prik. Math. Melch., 25, 1961

    Google Scholar 

  39. Taylor, G.I. and H. Quinney: The plastic distortion of metals, Ph. Trans. Roy. Soc. London, A230, 1931

    Google Scholar 

  40. Schmidt, R.: Uber der Zusammenhang von Spannungen und Formanderungen im Verfestigungsgebiet, Ing.-Archiv, 3, 1932

    Google Scholar 

  41. Odqvist, F.K.G.: Die Verfestigung von flusseisenähnlichen Körpern, ZAMM, 13, 1933

    Google Scholar 

  42. Hill, R.: The mathematical theory of plasticity, Oxford, 1950

    Google Scholar 

  43. Prager, W.: Recent developments in the mathematical theory of plasticity, J. Appl. Phys., 20, 1949

    Google Scholar 

  44. Prager, W.: The theory of plasticity - a survey of recent achievements, Proc. Inst. Mech. Eng., 169, 41, 1955

    Article  MathSciNet  Google Scholar 

  45. Prager, W.: A new method of analysing stresses and strain in work-hardening plastic solids, J. Appl. Mech., Trans. ASME, 23, 4, 1956

    Google Scholar 

  46. Ziegler, Z.: A modification of Prager’s hardening rule, Quart. Appl. Math, 17, 1, 1959

    MathSciNet  Google Scholar 

  47. Prager, W.: Einfluss der Deformation auf die Fliessbedingung von Zahplastischen Körpen, ZAMM, 15, 1935

    Google Scholar 

  48. Baltov, A. and A. Sawczuk: A rule of anisotropic hardening, Acta Mechanica, 1, 2, 1964

    Google Scholar 

  49. Mröz, Z.: On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15, 1967

    Google Scholar 

  50. Krieg, R.D.: A practical two surface plasticity theory, J. Appl. Mech., Trans. ASME, 1975

    Google Scholar 

  51. Mröz, Z., H.P. Shrivastava and R.N. Dubey: A non-linear hardening model and its application to cyclic loading, Acta Mechanica, 25, 1976

    Google Scholar 

  52. Rees, D.W.A.: A theory of non-linear anisotropic hardening, Proc. Inst. Mech. Eng., C, Mech. Engrg. Sci, 197, 1983

    Google Scholar 

  53. Sawczuk, A.: A note on anisotropic hardening, Bull. Acad. Polonaise Sciences, Series des Sciences Techniques, 28, 1980

    Google Scholar 

  54. Rees, D.W.A.: Anisotropic hardening theory and the Bauschinger effect, J. Strain Analysis for Engrg. Design, 16, 1981

    Google Scholar 

  55. Mröz, Z.: Hardening and degradation rules for metals under monotonic and cyclic loading, Trans. ASME, J. Engrg. Materials and Techol., 105, 1983

    Google Scholar 

  56. Cohn, M.Z. and G. Maier (Eds.): Engineering plasticity by mathematical programming, Pergamon, New York, 1979

    MATH  Google Scholar 

  57. Maier, G. and J. Munro: Mathematical programming applications to engineering plasticity, Appl. Mech. Review, 35, 1982

    Google Scholar 

  58. Karush, W.: Minima of functions of several variables with inequalities as side conditions, M.S. Thesis, Dept. of Mathematics, Univ. of Chicago, 1939

    Google Scholar 

  59. Kuhn, H.W. and A.W. Tucker: Nonlinear programming, 2nd Berkeley Symp. Math. Statistics and Probability, Berkeley, 1951

    Google Scholar 

  60. Cottle, R.W.: Symmetric dual quadratic programs, Q. Appl. Maths., 21, 1963

    Google Scholar 

  61. Kunzi, H.P., W. Krelle and W. Oettli: Nonlinear Programming, Blaisdell, 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Teixeira de Freitas, J.A. (1990). Piecewise-Linear Elastic-Plastic Stress-Strain Relations. In: Smith, D.L. (eds) Mathematical Programming Methods in Structural Plasticity. International Centre for Mechanical Sciences, vol 299. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2618-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2618-9_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82191-6

  • Online ISBN: 978-3-7091-2618-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics