Piecewise-Linear Elastic-Plastic Stress-Strain Relations

  • J. A. Teixeira de Freitas
Part of the International Centre for Mechanical Sciences book series (CISM, volume 299)


A matrix description for piecewise-linear models of inviscid. isothermal plastic behaviour is presented. A geometric interpretation of the plasticity conditions is used to illustrate the role of the intervening constitutive operators. A matrix description for incremental elastic-plastic stress-strain relations is presented and processed next through mathematical programming theory to illustrate its capacity for generating variational interpretations and statements of qualification regarding the existence, uniqueness and stability of elastoplastic solutions.


Yield Mode Yield Locus Admissible Solution Dual Program Unique Optimal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cauchy, A.: Recherches sur l’équilibre et le mouvement interieur des corps solides ou fluides, élastiques ou non élastiques, Bull. Soc. Philomatique, p 9–13, Paris, 1823Google Scholar
  2. 2.
    Tresca, H.: Mémoire sur l’écoulement des corps solides soumis à des fortes pressions, Compte-Rendu, 59, Paris, 1864Google Scholar
  3. 3.
    Guest, J.J.: On the strength of ductile materials under combined stress, Phil. Magazine, 50, 1900Google Scholar
  4. 4.
    Nguyen Dang Hung: Sur la plasticité et le calcul des états limites par éléments finis, Thése de Doctorat spécial, Univ. de Liège, 1985Google Scholar
  5. 5.
    Drucker, D.C.: Basic concepts in plasticity, Handbook of Engrg. Mech., W. Flügge, ( Ed. ), McGraw-Hill, 1962Google Scholar
  6. 6.
    Ilyushin, A.A.: On the foundations of the general mathematical theory of plasticity, Voprosy Teorii Plastichnosti, AN SSR, Moscow, 1961Google Scholar
  7. 7.
    Zyczkowsky, M.: Combined loadings in the theory of plasticity, Polish-Scientific Publ., 1981Google Scholar
  8. 8.
    Maier, G.: Some theorems for plastic strain rates and plastic strains, J. Mécanique, 8, 1969Google Scholar
  9. 9.
    Maier, G.: “Linear” flow-laws of elastoplasticity: a unified general approach, Accad. Naz. Lincei, VII, 47, 1969Google Scholar
  10. 10.
    Maier, G.: A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, 5, 1970Google Scholar
  11. 11.
    De Donato, O.: On piecewise-linear constitutive laws in plasticity, Tech. Rept. ISTC, 1974Google Scholar
  12. 12.
    Koiter, W.T.: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with singular yield surfaces, Quart. Appl. Math., 11, 1953Google Scholar
  13. 13.
    Phillips, A. and C.W. Lee: Yield surfaces and loading surfaces. Experiments and recommendations, Int. J. Solids Struct., 15, 1979Google Scholar
  14. 14.
    Cohn, M.Z.(Ed.): Inelasticity and non-linearity in structural concrete. Study No. 8, Solid. Mech. Div., University of Waterloo, 1973Google Scholar
  15. 15.
    Rees, D.W.A.: A review of stress-strain paths and constitutive relations in the plastic range, J. Strain Analysis for Engrg. Design, 16, 1981Google Scholar
  16. 16.
    Ramberg, W. and W.R. Osgood: Description of stress-strain curves by three parameters, NACA, TN 902, 1943Google Scholar
  17. 17.
    Margetton, J.: Tensile stress-strain characterization of nonlinear materials, J. Strain Analysis for Engrg. Design, 16, 1981Google Scholar
  18. 18.
    Sargin, M.: Stress-strain relationships for concrete and the analysis of structural concrete sections, Study No. 4, SMD, Univ. of Waterloo, 1971Google Scholar
  19. 19.
    C.E.B.- F.I.P. - Model code for concrete structures, Comité Euro-International du Béton, 1978Google Scholar
  20. 20.
    Murray, D.W. and L. Chitnuyanondh: Concrete plasticity theory for biaxial stress analysis, J. Engrg. Mech. Div., Proc. ASCE, 105, 1979Google Scholar
  21. 21.
    Brazant, Z.P. and S.S. Kim: Plastic-fracturing theory for concrete, J. Engrg. Mech. Div., Proc. ASCE, 105, 1979Google Scholar
  22. 22.
    Smith, D.L.: Plastic limit analysis and synthesis of frames by linear programming, PhD Thesis, Univ. of London, 1974Google Scholar
  23. 23.
    Von Mises, R.: Mechanik der plastichen Formänderung von Kristallen,ZAMM, 8, 1928Google Scholar
  24. 24.
    Melan, L.: Zur Plastizität der raümlichen kontinuums, Ing. Archiv., 9, 1938Google Scholar
  25. 25.
    Mröz, Z.: On forms of constitutive laws for elastic-plastic solids, Arch. Mech. Stosow., I, 13, 1966Google Scholar
  26. 26.
    Schereyer, H.L.: A third-invariant plasticity theory for frictional materials, J. Struct. Mech., 11, 1983Google Scholar
  27. 27.
    Hodge, P.G.: The theory of piecewise-linear isotropic plasticity, IUTAM Colloquium, Madrid, 1955Google Scholar
  28. 28.
    Berman, J. and P.G. Hodge: A general theory of piecewise linear plasticity for initially anisotropic materials, Arch. Mech. Stosow., XI, 5, 1959MathSciNetGoogle Scholar
  29. 29.
    De Saint-Venant, B.: Mémoire sur l’établissement des équations différentielles des mouvements intérieures opérés dans les corps solides ductiles au-deli des limites oú l’élasticité pourrait les ramener à leur premier état. Compte-Rendu 70, Paris, 1870Google Scholar
  30. 30.
    Von Mises, R.: Mechanik der festen Körper in plastich deformablen Zustent, Nach. Math. Phys., KL, 1913Google Scholar
  31. 31.
    Hencky, H.: Zur Theorie plastischer Deformationem und der Hiedurch im Material hervargerufenem nachspannungen, ZAMM, 4, 1924Google Scholar
  32. 32.
    Hosford, W.F.: A generalized isotropic yield criterion, Trans ASME, E39, 3, 1972Google Scholar
  33. 33.
    Mohr, O.: Welche Umstände belingen die Elastizitatsrenze und den Bruch einess Materials, Verein Deutscher Ingenieure, Düsseldorf, 44, 45, 1900, 1901Google Scholar
  34. 34.
    Mohr, O.: Abhandlungen aus dem Gebiete der Technischen Mechanik, Auflage, Ernest und Solin, Berlin, 1914Google Scholar
  35. 35.
    Drucker, D.C. and W. Prager: Soil mechanics and plastic analysis or limit design, Aust. Appl. Math., 10, 1952Google Scholar
  36. 36.
    Drucker, D.C.: Some implications of workhardening and ideal plasticity, Quart. Appt Maths, 7, 1950Google Scholar
  37. 37.
    Drucker, D.C.: A definition of stable inelastic materials, Trans ASME, J. Appl. Mech., 101, 1959Google Scholar
  38. 38.
    Ilyushin, A.A.: On the postulate of plasticity, Prik. Math. Melch., 25, 1961Google Scholar
  39. 39.
    Taylor, G.I. and H. Quinney: The plastic distortion of metals, Ph. Trans. Roy. Soc. London, A230, 1931Google Scholar
  40. 40.
    Schmidt, R.: Uber der Zusammenhang von Spannungen und Formanderungen im Verfestigungsgebiet, Ing.-Archiv, 3, 1932Google Scholar
  41. 41.
    Odqvist, F.K.G.: Die Verfestigung von flusseisenähnlichen Körpern, ZAMM, 13, 1933Google Scholar
  42. 42.
    Hill, R.: The mathematical theory of plasticity, Oxford, 1950Google Scholar
  43. 43.
    Prager, W.: Recent developments in the mathematical theory of plasticity, J. Appl. Phys., 20, 1949Google Scholar
  44. 44.
    Prager, W.: The theory of plasticity - a survey of recent achievements, Proc. Inst. Mech. Eng., 169, 41, 1955MathSciNetCrossRefGoogle Scholar
  45. 45.
    Prager, W.: A new method of analysing stresses and strain in work-hardening plastic solids, J. Appl. Mech., Trans. ASME, 23, 4, 1956Google Scholar
  46. 46.
    Ziegler, Z.: A modification of Prager’s hardening rule, Quart. Appl. Math, 17, 1, 1959MathSciNetGoogle Scholar
  47. 47.
    Prager, W.: Einfluss der Deformation auf die Fliessbedingung von Zahplastischen Körpen, ZAMM, 15, 1935Google Scholar
  48. 48.
    Baltov, A. and A. Sawczuk: A rule of anisotropic hardening, Acta Mechanica, 1, 2, 1964Google Scholar
  49. 49.
    Mröz, Z.: On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15, 1967Google Scholar
  50. 50.
    Krieg, R.D.: A practical two surface plasticity theory, J. Appl. Mech., Trans. ASME, 1975Google Scholar
  51. 51.
    Mröz, Z., H.P. Shrivastava and R.N. Dubey: A non-linear hardening model and its application to cyclic loading, Acta Mechanica, 25, 1976Google Scholar
  52. 52.
    Rees, D.W.A.: A theory of non-linear anisotropic hardening, Proc. Inst. Mech. Eng., C, Mech. Engrg. Sci, 197, 1983Google Scholar
  53. 53.
    Sawczuk, A.: A note on anisotropic hardening, Bull. Acad. Polonaise Sciences, Series des Sciences Techniques, 28, 1980Google Scholar
  54. 54.
    Rees, D.W.A.: Anisotropic hardening theory and the Bauschinger effect, J. Strain Analysis for Engrg. Design, 16, 1981Google Scholar
  55. 55.
    Mröz, Z.: Hardening and degradation rules for metals under monotonic and cyclic loading, Trans. ASME, J. Engrg. Materials and Techol., 105, 1983Google Scholar
  56. 56.
    Cohn, M.Z. and G. Maier (Eds.): Engineering plasticity by mathematical programming, Pergamon, New York, 1979MATHGoogle Scholar
  57. 57.
    Maier, G. and J. Munro: Mathematical programming applications to engineering plasticity, Appl. Mech. Review, 35, 1982Google Scholar
  58. 58.
    Karush, W.: Minima of functions of several variables with inequalities as side conditions, M.S. Thesis, Dept. of Mathematics, Univ. of Chicago, 1939Google Scholar
  59. 59.
    Kuhn, H.W. and A.W. Tucker: Nonlinear programming, 2nd Berkeley Symp. Math. Statistics and Probability, Berkeley, 1951Google Scholar
  60. 60.
    Cottle, R.W.: Symmetric dual quadratic programs, Q. Appl. Maths., 21, 1963Google Scholar
  61. 61.
    Kunzi, H.P., W. Krelle and W. Oettli: Nonlinear Programming, Blaisdell, 1966Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • J. A. Teixeira de Freitas
    • 1
  1. 1.Istituto Superior TecnicoLisbonPortugal

Personalised recommendations