Advertisement

The Physics of Ice-Water Phase Change Surfaces

  • K. Hutter
Part of the International Centre for Mechanical Sciences book series (CISM, volume 318)

Abstract

This lecture series outlines a theoretical thermodynamic formulation of phase change processes between ice and water and follows the work of Alts & Hutter (1986, 1988a, b, c, 1989).

Keywords

Boundary Layer Surface Tension Phase Boundary Phase Interface Surface Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alts, T.: Zur Thermodynamik der Vorgänge in festen und fluiden Mischungen, Ph.D. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 1971.Google Scholar
  2. Alts, T.: Thermodynamik elastischer Körper mit thermo-kinematischen Zwangsbedingungen-fadenverstärkte Materialien. Habilitation-Dissertation, Technische Universität Berlin, Universitätsbibliothek der TU Berlin, Abteilung Publikationen, 1979.Google Scholar
  3. Alts, T.: The principle of determinism and thermodynamics of simple fluids with thermokinematic constraints, J. Non-Equil. Thermo., 10 (1984), 145–162.Google Scholar
  4. Alts, T. and P. Strehlow: Frozen deformation, frozen stresses and structure-induced Na-distributions in sodium silicate glasses, J. Thermal Stresses, 7 (1984), 317–359.CrossRefGoogle Scholar
  5. Alts, T. and K. Hutter: Towards a theory of temperate glaciers: Dynamics and thermodynamics of phase boundaries between ice and water, Mitt. No. 82 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, (D. Vischer, Hrsg. ), ETH Zürich, 1986.Google Scholar
  6. Alts, T. and K. Hutter: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water, part I: Surface balance laws and their interpretation in terms of three-dimensional balance laws averaged over the phase change boundary layer, J. Non-Equil. Thermo., 13 (1988), 221–257.Google Scholar
  7. Alts, T. and K. Hutter: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water, part II: Thermodynamics, J. Non-Equil. Thermo., 13 (1988), 259–280.Google Scholar
  8. Alts, T. and K. Hutter: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water, part III: Thermostatics and its consequences, J. Non-Equil. Thermo., 13 (1988), 301–329.Google Scholar
  9. Alts, T. and K. Hutter: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water, part IV: On thermostatic stability and well-posedness, J. Non-Equil. Thermo., 14 (1989), 1–22.CrossRefGoogle Scholar
  10. Baehr, H.D.: Thermodynamik, Springer-Verlag, Heidelberg (3. Auflage) 1979.Google Scholar
  11. Becker, R.: Theorie der Wärme, Springer-Verlag, Heidelberg, 1961.Google Scholar
  12. Bowden, F.P. and Tabor, D.: The Friction and Lubrication of Solids, Clarendon Press, Oxford, 1954.Google Scholar
  13. Buff, F.P.: Curved fluid interfaces, I: The generalized Gibbs-Kelvin equation, J. Chem. Phys., 25 (1956), 146–153.CrossRefGoogle Scholar
  14. Buff, F.P. and Saltsburg, H.: Curved fluid interfaces, II: The Generalized Neumann Formula, J. Chem. Phys., 26 (1956), 23–31.CrossRefGoogle Scholar
  15. Buff, F.P. and Saltsburg, H.: Curved fluid interfaces, III: The dependence of the free energy on parameters of external force, J. Chem. Phys., 26 (1956), 1526–1533.CrossRefGoogle Scholar
  16. Carathéodory, C., Math. Annalen, 67 (1909), 355, in: Gesmmelte math. Schriften, Bd. II, S. 129, C.H. Beck’sche Verlagsbuchhandlung, München, 1955.Google Scholar
  17. Deemer, A.D. and Slattery, J.C.: Balance equations and structural models for phase interfaces, Int. J. Multiphase Flow, 4 (1978), 171–192.CrossRefGoogle Scholar
  18. Faraday, M.: Notes from Sept. 8, 10, 26, 1842 and Oct. 3, 1845, in: Faraday’s Diary, ed. by T. Martin, vol. I V, G. Bell and Sons, Ltd., London, 1933.Google Scholar
  19. Fletcher, N.H.: Surface structure of water and ice, Philosophical Magazine, Eighth Ser., 7 (1961), 255–269.Google Scholar
  20. Fletcher, N.H.: Surface structure of water and ice, II: A revised model, Philosophical Magazine, Eighth Ser., 18 (1966), 1287–1300.Google Scholar
  21. Gibbs, J.W.: The collected works of J. Willard Gibbs, V. 1, p. 219, Yale University Press, New Haven, 1929.Google Scholar
  22. Gibbs, J.W.: Collected Works, V. 1, pp. 55–353, Yale University Press, New Haven, 1948.Google Scholar
  23. Glen, J.W.: The creep of polycrystalline ice, Proc. Roy. Soc. London, A 228 (1955), 519–538.CrossRefGoogle Scholar
  24. Golecki, I., Jaccard, D.: The surface of ice near 0 C studied by 100 keV proton channeling, Physics Letters, 63A (1977), 374–376.CrossRefGoogle Scholar
  25. Grauel, A.: Thermodynamics of an interfacial fluid membrane, Physica, 103A (1980), 468–520.CrossRefGoogle Scholar
  26. Gubler, H.: Strength of bonds between ice grains after short contact times, J. Glaciology, 28 (1982), 457–473.Google Scholar
  27. Gurtin, M.E. and Murdoch, A. I.: A continuum theory of elastic material surfaces, Arch. Rat. Mech. Anal., 57 (1975), 291–323.Google Scholar
  28. Hobbs, P.V.: Ice Physics, Clarendron Press, Oxford, 1974.Google Scholar
  29. Hutter, K. and Trösch, J.: Über die hydromechanischen und thermodynamischen Grundlagen der Seezirkulation, Mitt. No. 20 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, 1976.Google Scholar
  30. Lindsay, K.A. and Straughan, B.: A thermodynamic viscous interface theory and associated stability problems, Arch. Rat. Mech. Anal., 71 (1979), 307–326.Google Scholar
  31. Liu, I-Shiu: Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rat. Mech. Anal., 46, (1972), 131–148.Google Scholar
  32. Moeckel, G.P.: Thermodynamics of an interface, Arch. Rat. Mech. Anal., 57 (1974), 255–280.CrossRefGoogle Scholar
  33. Müller, I.: Thermodynamik - Grundlagen der Materialtheorie, Bertelsmann Universitätsverlag, Düsseldorf, 1972.Google Scholar
  34. Nakaya, U. and Matsumoto, A.: Simple experiment showing the existence of “liquid water” film on the ice surface, J. Colloid Sci., 9 (1954), 41–49.CrossRefGoogle Scholar
  35. Nye, J.F. and Frank, F.C.: Hydrology of intergranular veins in a temperate glacier, in: Association Internationale d’Hydrologie Scientific. Symp. on the Hydrology of Glaciers, Cambridge, 1969, 157–161.Google Scholar
  36. Scriven, L.E.: Dynamics of a fluid interface, Chem. Engng. Sci., 12 (1960), 98–108.CrossRefGoogle Scholar
  37. Slattery, J.C.: General balance equations for a phase interface, I and EC Fundamentals, 6 (1967), 108–115.CrossRefGoogle Scholar
  38. Steinemann, S.: Experimentelle Untersuchungen zur Plastizität von Eis, Beiträge zur Geologie der Schweiz. Hydrologie, No. 10, 1958.Google Scholar
  39. Thomson, J.: Note on Professor Faraday’s recent experiments on regelation, Proc. Roy. Soc. London, All (1861), 198–204.Google Scholar
  40. Tyndall, J.: On some physical properties of ice, Proc. Roy. Soc. London, 9 (1858), 76–80.CrossRefGoogle Scholar
  41. Tyndall, J.: Über einige physikalische Eigenschaften des Eises, Ann. d. Physik u. Chemie, 103 (1858), 157–162.CrossRefGoogle Scholar
  42. Weyl, W.A.: Surface structure of water and some of its physical and chemical manifestations, J. Colloid Sci., 6 (1951), 389–405.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • K. Hutter
    • 1
  1. 1.Technische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations