A Phenomenological Approach to Fluid-Phase Interfaces

  • W. Kosinski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 318)


In these lectures an interface is modelled as a shell-like Eulerean region composed in principle of different material points at different instants. Consequent derivation of interfacial balance laws is performed in which true (not excess) quantities appear. Having (without any extrapolations) the exact integral relations for the true surface fields in terms of the bulk quantities from the layer, one can try to make constitutive assumption that take into account the interface and its interaction with the bulk phases as a whole, without retaining the macroscopically-irrelevant details of its structure. It is shown that one will in general have a nonsymmetric contribution to the interfacial stress tensor as well as nonvanishing normal component of it. This is true even for a non-polar fluid occupying the interface. Two cases of interfaces are considered, first with a constant thickness, and the other in which the thickness varies with time and space. A first correction to the Laplace relation is given. A more detailed description can be given in which higher order moments of the true fields appear. Relations between excess and true interfacial mass densities are given.


Phenomenological Approach Reference Surface Convect Parametrization Soap Film Singular Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.W.Adamson (1982). Physical Chemistry of Surfaces, Interscience, New York-London.Google Scholar
  2. A.M.Albano, D.Bedeaux and J.Vlieger (1979). On the description of interfacial properties using singular densities and currents at a dividing surface, Physica, 99 A, 293–304.Google Scholar
  3. T.Alts (1986). Some results of a boundary-layer theory for curved phase interfaces, in Lectures Notes in Physics, vol.249: Trends inGoogle Scholar
  4. Applications of Pure Mathematics to Mechanics, Proc. of 6-th Symp. Bad Honnef, October 21–25, 1985, E.Kröner and K.Kirchgässner (eds.), Springer, Berlin-Heidelberg-New York- Tokyo, pp. 500–512.Google Scholar
  5. T.Alts and K.Hutter (1986), Towards a theory of temperate glacier.Part I: Dynamics and thermodynamics of phase boundaries between ice and water, Mitteilungen No.82 der Versuchtsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich.Google Scholar
  6. T.Alts and K.Hutter (1988). Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Parts I and II, J.Non-Equilib. Thermodyn., 13, 221–280.Google Scholar
  7. T.Alts and K.Hutter (1989). Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Parts III and IV, J.Non-Equilib. Thermodyn., 13, 301–329, 14, 1–22.Google Scholar
  8. R.Aris (1962). Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, New York.Google Scholar
  9. F.Baillot et R.Prud’homme (1988). Lois de comportement d’interface, Annales de Physique, Colloque # 2, # 3, 13, 23–34.Google Scholar
  10. M.Barrère and R.Prud’homme (1973). Equations Fondamentales de l’Aérothermochimie, Masson et Cie, Paris.Google Scholar
  11. D.Bedeaux (1991). Non-equilibrium thermodynamics and statistical physics of the liquid-vapour interface, CISM, Udine, Lecture Notes, Springer, in this volume.Google Scholar
  12. A.Blinowski (1973). On the surface behaviour of gradient-sensitive liquids, Arch. Mechanics, 25 (2), 259–2268.Google Scholar
  13. R.M.Bowen and C.-C.Wang (1971). On displacement derivatives, Quart.Appl. Math., 29 (1), 29–39.Google Scholar
  14. F.P.Buff (1956). Curved fluid interfaces.I: Generalised Gibbs-Kelvin equation, J.Chem.Physics, 25, 146–153.CrossRefGoogle Scholar
  15. F.P.Buff (1960). The theory of capillarity, in Handbuch der Physik, vol. X, Springer, Berlin-Heidelberg–New York, pp. 281–304.Google Scholar
  16. R.Defay, I.Prigogine and A.Bellemans (1966). Surface Tension and Adsorption (trans. D.H. Everett ). Longmans, London.Google Scholar
  17. F.Dell’Isola and W.Kosinski (1989). The interface between phases as a layer. Part I: Mechanical balance equations, Universita’ di Napoli Reports, July, 1989, submitted for publication.Google Scholar
  18. F.Dell’Isola and W. Kosinski (1991). The interface between phases as a layer. Part Ia, in Proc. Vth Meeting: Waves and Stability in Continuous Media, Sorrento, October 1989, in print.Google Scholar
  19. F.Dell’Isola and A. Romano (1986). On a general balance law for continua with an interface, Ricerche di Matematica, 35 (2), 325–337.Google Scholar
  20. F.Dell’Isola and A. Romano (1987). On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface, Int.J. Engng Sci. 25 (11/12), 1459–1468.CrossRefGoogle Scholar
  21. A.R.D.Deemer and J.C.Slattery (1978). Balance equations and structural models for phase interfaces, Int.J.Multiphase Flow, 4, 171–192. J.-F.Dumais (1980). Two and three-dimensional interface dynamics, Physica, 104 A, 143–180.Google Scholar
  22. J.E.Dunn and J.Serrin (1985). On the thermomechanics of interstitial working, Arch. Rational Mech. Analysis, 88, 95Google Scholar
  23. R.Gatignol (1987). Liquid-vapour interfacial conditions, Rev.Romaine des Sci.Techn. Méc.Appl., 3.Google Scholar
  24. R.Gatignol and P. Seppecher (1986). Modelization of fluid-fluid interfaces with material properties, J. Mé Appl., Numero special, 225–247.Google Scholar
  25. R.Ghez (1966). A generalized Gibbsian surface, Surface Science, 4, 125–140.CrossRefGoogle Scholar
  26. J.W.Gibbs (1961). The Scientific Papers of J.Willard Gibbs, vol. I. Dover Publications, New York.Google Scholar
  27. V.V.Gogosov, V.A.Naletova, Chung Za Bing and G.A.Shaposhnikova (1983). Conservation laws for the mass, momentum, and energy on a phase interface for true and excess surface parameters, Izv.Akad.Nauk SSSR-Mekh. Zhidk. Gaz, 18(6), 107, (Engl.transl. in Fluid Dynamics 6, 923–930 ).Google Scholar
  28. M.E.Gurtin and A.I.Murdoch (1975). A continuum theory of elastic material surfaces, Arch. Rational Mech. Analysis, 57 (4), 291–323.Google Scholar
  29. D.Hayes (1957). The vorticity jump across a gasdynamic discontinuity, J.Fluid Mech., 2 (6), 595–600.CrossRefGoogle Scholar
  30. K.Hutter, The physics of ice-water phase change surfaces, CISM, Udine, Lecture Notes, Springer, in this volume.Google Scholar
  31. M. Ishii (1975). Thermo-fluid Dynamic Theory of Two Phase Flow, Eyroles, Paris.Google Scholar
  32. W.Kosinski (1981). Wstep do teorii osobliwosci pola i analizy fal, PWN Warszawa-Poznan.Google Scholar
  33. W.Kosinski (1983). Rownania ewolucji cial dyssypatywnych (in Polish), Habilitation Thesis, IFTR-Reports, 9 /83.Google Scholar
  34. W.Kosinski (1985). Thermodynamics of singular surfaces and phase transitions, in Free Moving Boundary Problems: Applications and Theory. vol. III, A. Bossavit, A. Damlamian and A.M. Fremond (eds.), Pitman, Boston-London-Melbourne, pp. 140–151.Google Scholar
  35. W.Kosinski (1986). Field Singularities and Wave Analysis in Continuum Mechanics, Ellis Horwood and PWN-Polish Scientific Publishers, Warsaw, Chichester.Google Scholar
  36. W.Kosinski (1989). Characteristics in phase transition problems. Rend.Sem.Math.Univ.Pol.Torino, Fasciolo Speciale, Hyperbolic Problems, 137–144.Google Scholar
  37. W.Kosinski and A.Romano (1989). Evolution balance laws in two-Phase problems, XVIIth IUTAM Congress in Grenoble, August 1988, also Arch. Mechanics, 41 (2–3), 255–266.Google Scholar
  38. W.Kosinski and A.O.Wasowski (1991). On shell theory equations, in preparation.Google Scholar
  39. I.N.Levine (1978). Physical Chemistry, McGraw-Hill, New York. K.A.Lindsay and B.Straughan (1979). A thermodynamic viscous interface theory and associated stability problems, Arch.Rational Mech.Analysis, 71 (4), 301–326.Google Scholar
  40. G.P.Moeckel (1974). Thermodynamics of an interface, Arch. Rational Mech. Analysis, 57 (3), 255–280.Google Scholar
  41. A.I.Murdoch (1990). A remark on the modelling of thin three-dimensional regions. in Elasticity: Mathematical Methods and Applications. (The Ian Sneddon 70th Birthday Volume), G.E.Eason and R.W.Ogden (eds.), Chichester: Ellis Horwood, Chichester.Google Scholar
  42. A.I.Murdoch (1991). On the physical interpretation of fluid interfacial concepts and quantities, CISM, Udine, Lecture Notes, Springer, in this volume.Google Scholar
  43. A. I. Murdoch and H. Cohen (1989). On the continuum modelling of fluid interfacial regions I: Kinematical considerations. submitted for publicationGoogle Scholar
  44. J.N.Murrel and E.A.Boucher (1982). Properties of Liquids and Solutions, John Wiley and Sons, Chichester.Google Scholar
  45. P.M.Naghdi (1972). The theory of shells and plates, in Handbuch der Physik,vol.VIa/2, 425–640Google Scholar
  46. Springer Verlag, Berlin-Heidelberg-New York. L.G.Napolitano (1978). Thermodynamics and dynamics of pure interfaces, Acta Astronautica, 5, 655–670.CrossRefGoogle Scholar
  47. L.G.Napolitano (1982). Properties of parallel-surface coordinate systems, Meccanica, 17, 107–118.CrossRefGoogle Scholar
  48. S.Ono and S.Kondo (1960). Molecular theory of surface tension in liquids, in Handbuch der Physik, vol.X, 135–280, Springer Verlag, Berlin-Goettingen-Heidelberg.Google Scholar
  49. J.Oscik (1982). Adsorption, PWN, Warszawa and Ellis Horwood, Chichester.Google Scholar
  50. H.Petryk and Z. Mróz (1986) Time derivatives of integrals and functionals defined on varying volume and surface domains, Arch. Mech., 38 (5–6), 697–724.Google Scholar
  51. A.Romano (1983). Thermodynamics of a continuum with an interface and Gibbs’ rule, Ricerche di Matematica, 31 (2), 277–294.Google Scholar
  52. L.E.Scriven (1960). Dynamics of a fluid interface, Chem.Engng.Sci., 12, 98–108.CrossRefGoogle Scholar
  53. P.Seppecher (1987). Étude d’une modélisation des zones capillares fluides interfaces et lignes de contact, Thèse, Univerisité Paris VI et E. N. S. T. A..Google Scholar
  54. M.Slemrod (1983). Admissibility criteria for propagating phase boundaries in a Van der Waals fluid, Arch. Rational Mech. Analysis, 81, 301.Google Scholar
  55. M.Slemrod (1989). A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase, Arch. Rational Mech. Analysis, 105 (4), 327–365.Google Scholar
  56. J.Serrin (1983). The form of interfacial surfaces in Korteweg’s theory of phase equilibria, Quart.Appl.Math., 41„ 357–364.Google Scholar
  57. J.C.Slattery (1967). General balance equation for a phase interface, Ind.Engng.Chem.Fundamentals, 6 (1), 108–115.CrossRefGoogle Scholar
  58. J.C.Slattery (1991). The prediction of static and dynamic contact angles, wetting and spreading, CISM, Udine, Lecture Notes, Springer, in this volume.Google Scholar
  59. T.Y.Thomas (1957). Extended compatibility conditions for the study of surfaces of discontinuity in continuum mechanics, J.Maths.Mech.,6, 311–322, 907–908.Google Scholar
  60. T.Y.Thomas (1961) Plastic Flow and Fructure in Solids, Academic Press, New York-London.Google Scholar
  61. T.Y.Thomas (1965). Concepts from Tensor Analysis and Differential Geometry, 2nd Edition, Academic Press, New York-London.Google Scholar
  62. C.A.Truesdell and R.A.Toupin (1960), The classical field theories, ir. Handbuch der Physik, vol.III/1, 226–793, Springer Verlag, Berlin-Göttingen-Heidelberg.Google Scholar
  63. K.Wilmanski (1975). Thermodynamic properties of singular surfaces in continuous media, Arch.Mechanics, 27 (3), 517–529.Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • W. Kosinski
    • 1
  1. 1.Polish Academy of SciencesWarsawPoland

Personalised recommendations