Skip to main content

The Approximate Analytical Methods in the Study of Transition to Chaotic Motion in Nonlinear Oscillators

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 319))

Abstract

The chapter presents an approximate approach to the study of transition to chaotic response in forced dissipative oscillators. We show that mathematical techniques and concepts of the approximate theory of nonlinear oscillations can be useful in constructing approximate criteria for chaos, i.e. in estimating system parameter critical values, the values for which chaos can be expected. The attention is focused on the strange phenomena which are related to the escape from a potential well. Four classical oscillators are studied in detail: two-well potential system under a) dynamic harmonic load, b) combined parametric and dynamic load; the single potential system with quadratic nonlinearity, and Duffing’s softening type oscillator. The approximate criteria for chaos (or escape) are obtained in the form of simple algebraic formulae. Computer simulations confirm that the theoretical results provide us with a good estimation of the system parameter critical values where the “strange phenomena” really occur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird H. and Morrall A. (1986), Research towards realistic stability criteria, Proc. Int. Conf. on the Safeship Project, Royal Inst. of Naval Architects, London.

    Google Scholar 

  2. Bolot in V.V. (1964), Dynamic Stability of Elastic Systems, Holden-Day, San Francisco.

    Google Scholar 

  3. Bajaj A.K. (1987), Bifurcations on a parametrically excited non-linear oscillator, Int. J. Non-Linear Mech. 22, 47–59.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bapat C.N. and Sankar S. (1986), Periodic and Chaotic Motions of a Mass-Spring System under Harmonic Force, Journal of Sound and Vibration, 108 (3), 533–536.

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedettini F. and Rega G. (1990) 1/2 Subharmonic Resonance and Chaotic Motion in a Model of Elastic Cable., in “ Nonlinear Dynamics in Engineering Systems, ed. Schiehlen, Springer-Verlag, Berlin, 27–34.

    Google Scholar 

  6. Dowell E.H. and Pezeshki C. (1988), On necessary and sufficient conditions for chaos to occur in Duffing’s equation: an heuristic approach; Journal of Sound and Vibration 121 (2), 195–200.

    MathSciNet  MATH  Google Scholar 

  7. Guckenheimer J. and Holmes P. (1983), Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.

    Google Scholar 

  8. Hayashi Ch., (19 85) Nonlinear Oscilations in Physical Systems, Princeton University Press, Princeton N. J.

    Google Scholar 

  9. Holmes P.J. and Moon F,C. (1983) Strange Attractors and Chaos in Nonlinear Mechanics, J. of Applied Mechanics 50, 1021–1032.

    Article  Google Scholar 

  10. Holmes P. (1979) A nonlinear oscillator with a strange attractor, Phil.Trans. of the Royal Soc. Ser.A, v.292, No. 1394, 419–448.

    Google Scholar 

  11. Huberman B. A. and Crutchfield J.P, (1979) Chaotic States of Anharmonic System in Periodic Fields, Physical Review Letters v. 43, 1743–1747.

    Article  Google Scholar 

  12. Miles J.W. (1989) On the Resonant Response of a Weakly Damped, Nonlinear Oscillator., Journal of Sound and Vibration 131 (3), 489–496.

    Article  MathSciNet  MATH  Google Scholar 

  13. Moon F.C. and Li C.X., (1985) Fractal Basin Boundaries and Homoclinic Orbits for Periodic Motion in a Two-well Potential. Physical Rev. Letters, 55, 1439–1444.

    Article  MathSciNet  Google Scholar 

  14. Moon F.C. and Li C.X., (1985)2, The fractal dimension of the two-well potential strange attractor, Physica D, 99–108.

    Google Scholar 

  15. Moon F.C., (1987) Chaotic Vibrations, J. Wiley Sons, New York.

    Google Scholar 

  16. Nayfeh A.H. and Mook D.T. (1979), Nonlinear Oscillations, J. Wiley, New York.

    Google Scholar 

  17. Nayfeh A.H. and Sanchez N.E,(1989). Bifurcations in forced softening Duffing oscillator, Int. J. Non-Linear Mech. 24, 483–497.

    Google Scholar 

  18. Kriukov B.J., (1984) Forced oscillations in strongly nonlinear systems, Masinostroienie, Moskwa, (in Russian).

    Google Scholar 

  19. Kriukov B.J. and Seredovich G.J. (1981), On strange behaviour of solution of Duffing equation, Doklady Akademii Nauk SSSR, 258, 311–314, (in Russian).

    MathSciNet  Google Scholar 

  20. Plaut B.H. and Hsieh J.C., (1985), Oscillations and Instability of a Shallow Arch under Two-Frequency Excitations. J. Sound and Vibration, 102, 198–201.

    Google Scholar 

  21. Raty R, J. von Boem and Isomâki H.M., (1984), Absence of i,nversion-symmetric limit cycles of even periods and the chaotic motion of Duffing’s oscillator, Physics Lett. 103A, 289–291.

    Article  Google Scholar 

  22. Raty R, J. von Boem and Isomâki H.M., (1986), Chaotic motion of periodically driven particle in an asymmetric well, Physical Review A, v. 34, 4310–4315.

    Article  Google Scholar 

  23. Shin-ichi Sato, M. Sano and K. Sawada, (1981) Universal scaling property in bifurcation structure of Duffings and of generalized Duffing’s equations. Physical Rev. A, 28, 1654–1658.

    Google Scholar 

  24. Seydel R., (1985) Attractors of a Duffing equation-dependence on the exciting frequency, Physica 17D, 308–312.

    MathSciNet  Google Scholar 

  25. Schmidt G., (1986), Onset of Chaos and Global Analytical Solutions for Duffing’s Oscllator, ZAMM, 16, 129–140.

    Article  Google Scholar 

  26. Schmidt G. and Dum R. (1989), Van-der Pol-Duffing oscillators and trigonometric iteraction, ZAMM 69, 267–274.

    Article  MathSciNet  MATH  Google Scholar 

  27. Soliman M.S. and Thompson J.M.T., (1990), Integrity measures quantifying the erosion of smooth and fractal basins of attraction, J. Sound and Vibration (in press).

    Google Scholar 

  28. Swift J. and Wiesenfeld K. (1984), Suppresion of period doubling in symmetric systems, Phys.Rev.Lett. 52, 705–710.

    Article  MathSciNet  Google Scholar 

  29. Szemplins k a-Stupnicka W. (1987), Secondary resonances and approximate models of routes to chaotic motions in non-linear oscillators, Journal of Sound and Vibration, 113 (1)

    Google Scholar 

  30. Szemplinska-Stupnicka W., Joos G. and Moon F.C. (1988)1, Chaotic Motion in Nonlinear Dynamical Systems, Springer-Verlag, Wien.

    Google Scholar 

  31. Szemplinska-Stupnicka W.(1988)2, Bifurcations of harmonic solution leading to chaotic motion in the softening type Duffing’s oscillator, Int. J. Non-Linear Mech, 23, 4, 257–277.

    Google Scholar 

  32. Szemplinska-Stupnicka W.(1988)3, The refined approximate criterion for chaos in a two-state mechanical oscillator, Ing. Archiv 58, 354–366.

    Google Scholar 

  33. Szemplinska-Stupnicka W, Plaut R.H. and J.C. Hsieh, (1989)1, Period Doubling and Chaos in Unsymmetric Structures under Parametric Excitation, J. Applied Mech. 56, 947–952.

    Google Scholar 

  34. Szemplinska-Stupnicka W, (1989)2, The approximate criteria for chaos in multi-well potential vibrating systems, Nonlinear Dynamics in Engineering Systems, ed. Schiehlen, Springer-Verlag, Berlin, 305–312.

    Google Scholar 

  35. Szemplinska-Stupnicka W, and Niezgodzki P. (1990)1, The approximate approach to chaos phenomena in oscillators having single equlibrium position. J. Sound and Vibration 141(2), 181–192.

    Google Scholar 

  36. Szemplinska-Stupnicka W, and Rudowski J., (1990)2, Local methods in predicting an occurence of chaos in the two-well potential system: superharmonic frequency region. J. Sound and Vibration (in press).

    Google Scholar 

  37. Szemplinska-S t upnicka W. (1990)3 The Behavior of Non-linear Vibrating Systems, Kluwer Academic Publishers.

    Google Scholar 

  38. Tang D.M. and Dowell E.H. (1988), On the Treshold Force for Chaotic Motions for a Forced Buckled Beam, J. Applied Mech, 55,. 190–196.

    Google Scholar 

  39. Thompson J.M.T. and Hunt G.W. (1984), Elastic instability phenomena, Chichester, Wiley.

    MATH  Google Scholar 

  40. Thompson J.M.T. and Stewart H.B. (1986), Nonlinear Dynamics and Chaos, J.Wiley Sons, New York.

    MATH  Google Scholar 

  41. Thompson J.M.T, (1989)1, Chaotic phenomena triggering the escape from a potential well, Proc. R. Soc. London, A 421, 195–225.

    Google Scholar 

  42. Thompson J.M.T, (1989)2, Loss of engineering integrity due to the erosion of absolute and transient basin boundaries, Nonlinear Dynamocs in Engineering Systems, ed. Schiehlen, Springer-Verlag, Berlin, 313–320.

    Google Scholar 

  43. Tongue B.H. (1986), Existence of chaos in a one-degree of-freedom systems,. J. Sound and Vibration, 110 (1), 69–78.

    Article  MathSciNet  MATH  Google Scholar 

  44. Tousi S. and Bajaj A.K. (1985), Period Doubling Bifurcations and Modulated Motions in Forced Mechanical Systems, J. Applied Mech. 52, 446–452.

    Article  MathSciNet  Google Scholar 

  45. Virgin L. N. (1987) The nonlinear rolling response of a vessel including chaotic motions leading to a capsize in regular seas, Applied Ocean Research, 9 (2), 89–95.

    Article  Google Scholar 

  46. Virgin L.N. (1988), On the harmonic response of an oscillator with unsymmetric restoring force, J.Sound and Vibration, 126 (1), 157–166.

    Article  Google Scholar 

  47. Ueda Y. (1979), Randomly Transitional Phenomena in the System Governed by Duffing’s Equation, Journal of Stat. Phys. 20, 181–196.

    Article  MathSciNet  Google Scholar 

  48. Ueda Y. (1980), Explosion of Strange Attractor Exhibited by Duffing Equation, Annals of the N.Y. Academy of Sciences, v. 357, 422–434.

    Article  Google Scholar 

  49. Ueda Y. (1985) Random phenomena resulting from nonlinearity in the system described by Duffing’s equation. Int. Journal of Non-Linear Mech. 20, 481–491.

    Article  Google Scholar 

  50. Zavodney L.D., Nayfeh A.H. and Sanchez N.E. (1989) The response of a single-degree-of-freedom system with quadratic and cubic nonlinearities to a principal, parametric resonance. J. Sound and Vibration, 129 (3), 417–442.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Szemplinska-Stupnicka, W. (1991). The Approximate Analytical Methods in the Study of Transition to Chaotic Motion in Nonlinear Oscillators. In: Szemplinska-Stupnicka, W., Troger, H. (eds) Engineering Applications of Dynamics of Chaos. International Centre for Mechanical Sciences, vol 319. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2610-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2610-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82328-6

  • Online ISBN: 978-3-7091-2610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics