Skip to main content

Chaotic Motion in Mechanical and Engineering Systems

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 319))

Abstract

We start with the definition of a chaotic process by relating the time evolution of a deterministic mechanical system which is governed by Newton’s laws to the stochastic sequence of heads and eagles following from the process of repeatedly tossing a fair coin. Then we give conditions which must be fulfilled by a mechanical system to meet this definition which basically requires the occurence of transversal homoclinic points and consequently results in the existence of the horseshoe and shift map.

In order to apply this approach to a mechanical system with finitely many or infinitely many degrees of freedom reductions of the dimension of the phase space in which the evolution of the system will be represented must be performed. Here the concepts of center manifolds and inertial manifolds are introduced. Further an extensive treatment of the Melnikov method and the explanation of a numerical method which both allow to establish the existence of transversal homoclinic points is given.

Applications are presented for simple mechanical systems like the pendulum with oscillating support, a satellite on an elliptic orbit, a two bar robot performing a prescribed endpoint motion and the clattering oscillations in a gear box. In addition also the planar, chaotic oscillations of a fluid conveying pipe are considered which are governed by an infinite dimensional dynamical system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flockerzi, D., Lectures on chaos, TU-Wien 1990.

    Google Scholar 

  2. Devaney, R. L., An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publ. Comp. 1987.

    Google Scholar 

  3. Troger, H., Steindl, A., Nonlinear Stability and Bifurcation Theory; An Introduction for Engineers and Applied Scientists, Springer-Verlag Wien 1991.

    Book  MATH  Google Scholar 

  4. Leven, R. W., Koch, B. P., Pompe, B., Chaos in dissipativen Systemen, WTB 304, Akademie-Verlag Berlin 1989.

    Book  MATH  Google Scholar 

  5. Aceves, A., Adachihara, H., Jones, C., Lerman, J. C., Mc Laughlin, D., Moloney, J. V., Newell, A. C., Chaos and Coherent Structures in Partial Differential Equations, Physica 18 D (1986) 85–112.

    Google Scholar 

  6. Busse, F., Nonlinear properties of convection in spherical shells, J. Fluid Mech. 72 (1975), 67–85.

    Article  MATH  Google Scholar 

  7. Carr, J., Applications of centre manifold theory, Appl. Math. Sciences 35, Springer-Verlag, Heidelberg — New York 1981.

    Book  MATH  Google Scholar 

  8. Mc Laughlin, J. B., Martin, P. C., Transition to turbulence in a statically stressed fluid system, Phys. Rev. Al2 (1979) 186.

    Google Scholar 

  9. Foias, C., Jolly, M. S., Kevrekidis, I. G., Sell, G. R., Titi, E. S., On the Computation of Inertial Manifolds, Physics Letters A, 131 (1988) 433–436.

    Article  MathSciNet  Google Scholar 

  10. Seisl, M., Steindl, A., Troger, H., Chaos im diskreten Modell der Sinus Gordon Gleichung, ZAMM 68 (1988) T120 - T122.

    MathSciNet  Google Scholar 

  11. Wiggins, S., Global Bifurcations and Chaos, Analytical Methods, Applied Math. Sciences 73, Springer-Verlag 1988.

    Google Scholar 

  12. Drazin, P. G., Solitons, London Math. Soc. Lect. Note Series 85, Cambridge Univ. Press, London 1983.

    Google Scholar 

  13. Bishop, A. R., Fesser, K., Lomdahl, P. S., Trullinger, S. E., Influence of solitons in the initial state on chaos in the driven damped sine-Gordon system, Physica 7D (1983) 259–279.

    MathSciNet  MATH  Google Scholar 

  14. Seisl, M., Steindl, A., Troger, H., A numerical study of the transition to chaos for perturbed sine-Gordon equations, Proceedings of STAMM 8, Hollabrunn 1989, Longman Scientific 1990.

    Google Scholar 

  15. Overmann, E. A., Mc Laughlin, D. W., Bishop, A. R., Coherence and chaos in the driven damped sine Gordon equation: Measurement of the soliton spectrum, Physica 19D (1986)

    Google Scholar 

  16. Troger, H., On Point Mappings for Mechanical Systems Possessing Homoclinic and Heteroclinic Points, J. Appl. Mech. 46 (1979) 468–469.

    Article  MATH  Google Scholar 

  17. Guckenheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectorfields, Springer-Verlag, New York — Berlin 1983.

    Book  Google Scholar 

  18. Seisl, M., Steindl, A., Chaotische Schwingungen von Satelliten, ZAMM 69 (1989) T352 - T354.

    MathSciNet  MATH  Google Scholar 

  19. Zlatoustov, V. A., Okhotsinsky, D. E., Sarychev, V. A., Torzhevsky, A. P., Investigation of satellite oscillations in the plane of an elliptic orbit, In: Proc. IUTAMConference Munich 1964, ( H. Görtler ed.), Springer-Verlag, Berlin — Heidelberg 1965, 436–439.

    Google Scholar 

  20. Lundgren, T. S., Sethna, P. R., Bajaj, A. K., Stability Boundaries for Flow Induced Motions of Tubes with an Inclined Nozzle, J. Sound and Vibrations 64 (1979) 553–571.

    Article  MATH  Google Scholar 

  21. Rousselet, J., Herrmann, G., Dynamic Behavior of Continuous Cantilever Pipes Conveying Fluid Near Critical Velocities, J. Appl. Mech. 48 (1981) 606–611.

    Article  Google Scholar 

  22. Oberle, H. J., Grimm, W., Berger, E., BNDSCO — Rechenprogramm zur Lösung beschränkter optimaler Steuerungsprobleme, TUM-M 8509, Math. Inst. Technische Universität München, 1985.

    Google Scholar 

  23. Hirsch, M., Smale, S., Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York 1974.

    MATH  Google Scholar 

  24. Scheidl, R., Troger, H., Zeman, K., Coupled Flutter and Divergence Bifurcation of a Double Pendulum, Int. J. Non-Linear Mechanics 19 (1983) 163–176.

    Article  MathSciNet  Google Scholar 

  25. Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, Heidelberg — New York 1982.

    Google Scholar 

  26. Jänich, K., Analysis, Springer-Verlag, Berlin — New York 1983.

    MATH  Google Scholar 

  27. Kücükay, F., Pfeiffer, F., Über Rasselschwingungen in KFZ-Schaltgetrieben, Ingenieur-Archiv 56 (1986) 25–37.

    Article  Google Scholar 

  28. Pfeiffer, F., Seltsame Attraktoren in Zahnradgetrieben, Ingenieur-Archiv 58 (1988) 113–125.

    Article  Google Scholar 

  29. Karagiannis, K., Analyse stoßbehafteter Schwingungssysteme mit Anwendung auf Rasselschwingungen in Getrieben, VDI-Fortschrittsberichte Reihe 11: Schwingungstechnik Nr. 125, VDI-Verlag Düsseldorf 1989.

    Google Scholar 

  30. Arnold, V. I., Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin — New York 1978.

    Book  MATH  Google Scholar 

  31. Pfeiffer, F., Dynamical Systems with Time-Varying or Unsteady Structure, ZAMM 71 (1991) T6 - T22.

    MathSciNet  Google Scholar 

  32. Hsu, C. S., Cell-to-Cell Mapping, A Method of Global Analysis for Nonlinear Systems, Applied Math. Sciences 64, Springer-Verlag, Heidelberg — New York 1987.

    Google Scholar 

  33. Isomäki, H. M., Fractal Properties of the Bouncing-Ball Dynamics, in: Nonlinear Dynamics in Engineering Systems, W. Schiehlen (ed.), Springer-Verlag, New York — Berlin, 1990, 125–131.

    Chapter  Google Scholar 

  34. Franaszek, M., Isomäki, H. M., Anormalous Chaotic Transients and Repellers of the Bouncing-Ball Dynamics, Phys. Rev. A 1991, in press.

    Google Scholar 

  35. Roy, A. E., Orbital Motion, A. Hilger Ltd., Bristol, 1982.

    Google Scholar 

  36. Tufillaro, N., Abbott, T., Reilly, J., An Experimental Approach to Nonlinear Dynamics and Chaos, Addison-Wesley, 1991.

    Google Scholar 

  37. Kratochwil, K., Personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Steindl, A., Troger, H. (1991). Chaotic Motion in Mechanical and Engineering Systems. In: Szemplinska-Stupnicka, W., Troger, H. (eds) Engineering Applications of Dynamics of Chaos. International Centre for Mechanical Sciences, vol 319. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2610-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2610-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82328-6

  • Online ISBN: 978-3-7091-2610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics