Skip to main content

Singular-Perturbation Homoclinic Hyperchaos

  • Chapter
Engineering Applications of Dynamics of Chaos

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 319))

  • 223 Accesses

Abstract

The relaxation-oscillation or singular-perturbation principle, respectively, lends itself to the generation of chaotic flows out of two 2-D flows connected via two 1-D thresholds (“reinjection principle”). In the same vein, two 3-D flows can be overlaid to generate hyperchaos using two 2-D thresholds. A special case in spiral-flow-based singular-perturbation chaos is “homoclinic” reinjection, a codimension-one situation that is covered by Shil’nikov’s theorem after time inversion. An analogous reinjection in screw-flow-based hyperchaos is of codimension two. An infinitely often folded (in the limit noninvertible) hyperhorseshoe exists near the homoclinic trajectory. The latter can be part of a strictly self-similar basin boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rossler, O.E. (1976). Chaotic behavior in simple reaction systems. Z. Naturforsch. 31 a, 259–264.

    MathSciNet  Google Scholar 

  2. Rossler, O.E. (1979) Chaos. In: Structural Stability in Physics, ( W. Göttinger and H. Eikemeier, eds.), pp. 290–309. New York: Springer-Verlag.

    Chapter  Google Scholar 

  3. Shil’nikov, L.P. (1965). A case of the existence of a countable number of periodic motions. Soviet Math. Dokl. 6, 163–166.

    Google Scholar 

  4. Rossler, O.E. (1979). An equation for hyperchaos. Phys. Lett. 71 A, 155–157.

    Article  MathSciNet  Google Scholar 

  5. Smale, S. (1967). Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  6. Shilnikov, L.P. (1970). A contribution to the problem of the structure of an extended neighborhood of a structurally stable equilibrium of saddle-focus type. Math. USSR Sbornik 10, 91–102.

    Article  Google Scholar 

  7. Rossler, O.E., C. Kahlert, J. Parisi, J. Peinke and B. Röhricht (1986). Hyperchaos and Julia sets. Z. Naturforsch. 41a, 819–322.

    MathSciNet  Google Scholar 

  8. Rossler, O.E., J.L. Hudson, M. Klein and C. Mira (1990). Self-similar basin boundary in a continuous system. In: Nonlinear Dynamics in Engineering Systems, ( W. Schiehlen, ed.), pp. 265–273. New York: Springer-Verlag.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Rossler, O.E. (1991). Singular-Perturbation Homoclinic Hyperchaos. In: Szemplinska-Stupnicka, W., Troger, H. (eds) Engineering Applications of Dynamics of Chaos. International Centre for Mechanical Sciences, vol 319. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2610-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2610-3_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82328-6

  • Online ISBN: 978-3-7091-2610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics