Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 319))

Abstract

The transition to turbulence is a wide subject impossible to set out in few lectures. Here we review some selected topics and, in each case, present a small set of experiments chosen to bring into light a new facet of the problem [1]. Chapter 1 is mainly devoted to setting the general frame, introducing indispensable prerequisites about instability mechanisms, discussing briefly the roles of confinement in closed flows and advection in open flows, and outlining specific difficulties involved in case of “direct” transition to turbulence. In Chapter 2 we consider “plain convection” best illustrating the connection between chaos and turbulence. Both the instability mechanism and confinement effects are appealingly intuitive. We first examine the case of confined systems with frozen spatial structure, which makes the theory of dissipative dynamical systems relevant. Then we turn to extended systems where key-words are modulations and patterns. This presentation is further completed by a brief introduction to convection in binary mixtures (Chapter 3) and centrifugal instabilities (Chapter 4). The first topic adds the possibility of propagating waves and related new features of the nonlinear processes leading to weak turbulence. The second topic is illustrated by the case of a Couette flow between coaxial cylinders rotating at different angular speeds, which introduce the effects of shear in a seemingly simple context. At last we examine plane parallel shear flows (Chapter 5). We first discuss the instability mechanisms and introduce the basic distinction between “absolute” and “convective” instabilities dealing with the specificities of downstream advection. Then we review the phenomenology of the transition to turbulence from the early nonlinear stages to the late stages, including the dynamics of turbulent spots in flows of engineering interest. The importance of the recent advances reviewed is assessed in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a more detailed presentation of sections 1–3, consult: Manneville, P.: Dissipative Structures and Weak Turbulence, Academic Press, 1990.

    Google Scholar 

  2. Landau, L.D.: Akad. Nauk. Doklady 44 (1944), 339;

    Google Scholar 

  3. Landau, L.D.: English translation, in: Collected Papers of L.D. Landau, (Ed. D. ter Haar ), Pergamon Press, 1965.

    Google Scholar 

  4. Ruelle, D. and Takens, F.: Comm. Math. Phys. 20 (1971), 167;

    Article  MathSciNet  MATH  Google Scholar 

  5. Ruelle, D. and Takens, F.: Comm. Math. Phys. 23 (1971), 344.

    MathSciNet  Google Scholar 

  6. A general introduction to fluid flow problems is given in: Tritton, D.J.: Physical fluid dynamics, 2nd Edition, Clarendon Press, 1988.

    Google Scholar 

  7. Huerre, P.: Spatio-Temporal Instabilities in Closed and Open Flows, in: Instabilities and Nonequilibrium Structures, (Eds. E. Tirapegui and D. Villaroel ), Reidel, 1987.

    Google Scholar 

  8. Huerre, P. and Monkewitz, P.A.: Local and global instabilities in spatially developing flows, Annual Review of Fluid Mechanics 22 (1990), 473.

    Article  MathSciNet  Google Scholar 

  9. Coles, D.: J. Fluid Mech. 21 (1965), 285.

    Google Scholar 

  10. Carlson, D.R., Widnall, S.E., and Peeters, M.F.: J. Fluid Mech 121 (1982), 487.

    Article  Google Scholar 

  11. Riley, J.J. and Gad-el-Hak, M.: The dynamics of turbulent spots, in [10].

    Google Scholar 

  12. Davis, S.H. and Lumley, J.L., Eds.: Frontiers in fluid dynamics, Springer, 1985.

    Google Scholar 

  13. Pomeau, Y.: Physica D 23 (1986), 3.

    Article  Google Scholar 

  14. Swinney, H.L., Gollub, J.P., Eds.: Hydrodynamic instabilities and the transition to turbulence, Topics in Applied Physics vol.45, Springer, 1985.

    Google Scholar 

  15. Platten, J.K. and Legros, J.C.: Convection in liquids, Springer, 1984

    Google Scholar 

  16. Drazin, P.G. and Reid W.H.: Hydrodynamic stability, Cambridge, 1981.

    Google Scholar 

  17. Krishnamurti, R.: J. Fluid Mech. 60 (1973), 285.

    Article  Google Scholar 

  18. Libchaber, A. and Maurer, J.: J. Physique Coll. 41-C3 (1980), 51.

    Google Scholar 

  19. Dubois, M. and Bergé, P.: J. Physique 42 (1981), 167.

    Article  Google Scholar 

  20. Bergé, P., Dubois, M., Manneville, P., and Pomeau, Y.: J. Physique Lettres 40 (1979), L-505.

    Article  Google Scholar 

  21. Gollub, J.P. and Benson, S.V.: J. Fluid Mech. 100 (1980), 449.

    Article  Google Scholar 

  22. Walden, R.W., Kolodner, P., Passner, A., and Surko, C.M.: Phys. Rev. Lett. 53 (1984), 242.

    Article  Google Scholar 

  23. Grebogi, C., Ott, E., and Yorke, J.A.: Physica D 15 (1985), 354.

    Article  MathSciNet  MATH  Google Scholar 

  24. Gershenfeld, N.: An experimentalist’s approach to the observation of dynamical systems, in: Directions in Chaos, vol. II, (Ed. Hao Bailin ), World Scientific, 1988.

    Google Scholar 

  25. Takens, F.: Detecting strange attractors in turbulence, in: Dynamical systems and turbulence, Warwick, 1980, (Eds. D.A. Rand and L.S. Young), Lect. Notes in Mathematics Vol. 898, p. 366, Springer, 1981.

    Google Scholar 

  26. Packard, N.H., Crutchfield, J.P., Farmer, J.D., and Shaw, R.S.: Phys. Rev. Lett. 45 (1980), 712.

    Article  Google Scholar 

  27. Sano, M. and Sawada, Y., in [26].

    Google Scholar 

  28. Tatsumi, T., Ed.: Turbulence and Chaotic Phenomena in Fluids, Elsevier, 1984.

    Google Scholar 

  29. Grassberger, P. and Procaccia, I.: Phys. Rev. Lett. 50 (1983), 346;

    Article  MathSciNet  Google Scholar 

  30. Grassberger, P. and Procaccia, I.: Physica D 9 (1983), 189.

    Article  MathSciNet  MATH  Google Scholar 

  31. Malraison, B., Atten, P., Bergé, P., and Dubois, M.: C.R. Acad. Sc. Paris, Série II, 297 (1983), 209.

    Google Scholar 

  32. Eckmann, J.P. and Ruelle, D.: Rev. Mod. Phys. 57 (1985), 617.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A.: Physica D 16 (1985), 285.

    Article  MathSciNet  MATH  Google Scholar 

  34. Sano, M. and Sawada, Y.: Phys. Rev. Lett. 55 (1985), 1082.

    Article  MathSciNet  Google Scholar 

  35. Conte R. and Dubois M.: Lyapunov exponents of experimental systems, in Nonlinear evolutions, (Ed. J.P. Leon ), World Scientific, 1988.

    Google Scholar 

  36. Broomhead, D.S. and King, G.P.: Physica D 20 (1986), 217.

    Article  MathSciNet  MATH  Google Scholar 

  37. Newell, A.C. and Whitehead, J.A.: J. Fluid Mech. 38 (1969), 279;

    Article  MATH  Google Scholar 

  38. Segel, L.A.: J. Fluid Mech. 38 (1969), 203.

    Article  MATH  Google Scholar 

  39. Cross, M.C.: Phys. Rev. A 25 (1982), 1065.

    Article  Google Scholar 

  40. Cross, M.C. and Newell, A.C.: Physica D 10 (1984), 299.

    Article  MathSciNet  MATH  Google Scholar 

  41. Heutmaker, M.S., Fraenkel, P.N., and Gollub, J.P.: Phys. Rev. Lett. 54 (1985), 1369.

    Article  Google Scholar 

  42. Ahlers, G. and Behringer, R.P.: Phys. Rev. Lett. 40 (1978), 12.

    Google Scholar 

  43. Libchaber, A. and Maurer, J.: J. Physique-Lettres 39 (1978), L-369.

    Article  Google Scholar 

  44. Pocheau, A., Croquette, V., and Le Gal, P.: Phys. Rev. Lett. 55 (1985), 1094.

    Article  Google Scholar 

  45. Siggia, E.D. and Zippelius, A.: Phys. Rev. Lett. 47 (1981), 835.

    Article  Google Scholar 

  46. Pomeau, Y. and Manneville, P.: J. Physique-Lettres 40 (1980), L-609.

    Google Scholar 

  47. Eckhaus, V.: Studies in nonlinear stability theory, Springer Tracts in natural Philosophy vol.6, Springer, 1965),.

    Google Scholar 

  48. Cross, M.C.: Phys. Rev. A 27 (1983), 490;

    Article  Google Scholar 

  49. Manneville, P. and Piquemal, J.M.: Phys. Rev. A 28 (1983), 1774.

    Google Scholar 

  50. Newell, A.C.: The Dynamics of Patterns, a Survey, in [46].

    Google Scholar 

  51. Wesfreid, J.E. et al, Eds.: Propagation in Systems far from Equilibrium, Springer Series in Synergetics, Vol. 41, Springer, 1988.

    Google Scholar 

  52. Kuramoto, Y.: Prog. Theor. Phys. 71 (1984), 1182.

    Google Scholar 

  53. Brand, H.R.: Phase Dynamics, a Review and a Perspective, in [46].

    Google Scholar 

  54. Ohta, T.: Prog. Theor. Phys. 73 (1985), 1377.

    Google Scholar 

  55. Pocheau, A.: J. Physique 50 (1989), 2050.

    Google Scholar 

  56. Newell, A.C., Passot, T., and Souli, M., Phase-mean drift equations for convection in large aspect ratio containers, in: Nonlinear evolution of statio-temporal structures in dissipative continuous systems, (Eds. F.H. Busse and L. Kramer ), NATO ASI Series, Series B: Physics, Plenum press, 1990.

    Google Scholar 

  57. Bergé, P.: Nucl. Phys. B (Proc.Suppl.), 2 (1987), 247;

    Article  Google Scholar 

  58. Ciliberto, S. and Bigazzi, P.: Phys. Rev. Lett. 60 (1988), 286.

    Article  Google Scholar 

  59. Daviaud, F., Dubois, M., and Berge, P.: Europhys. Lett. 9 (1989), 441.

    Article  Google Scholar 

  60. Kaneko, K.: Prog. Theor. Phys. 74 (1985), 1033.

    Google Scholar 

  61. Kinzel, W.: Directed Percolation, in: Percolation Structures and Processes, (Eds. G. Deutscher et al.) Annals of the Israel Phys Soc., vol. 5, 1983;

    Google Scholar 

  62. Kinzel, W.: Z. Phys. B (Condensed Matter) 58 (1985), 229.

    Article  MathSciNet  MATH  Google Scholar 

  63. Chaté, H. and Manneville, P.: Transition to turbulence via spatio-temporal intermittency, modeling and critical properties, in [57].

    Google Scholar 

  64. Coullet, P. and Huerre, P., Eds.: New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: the Geometry of Nonequilibrium, Plenum Press, to appear.

    Google Scholar 

  65. Moses, E. and Steinberg, V., Phys. Rev. Lett. 57 (1986), 2018.

    Google Scholar 

  66. Surko, C.M., Kolodner, P., Passner, A., and Walden, R.W.: Physica D 23 (1986), 220;

    Article  Google Scholar 

  67. Kolodner, P., Passner, A., Williams, H.L., and Surko, C.M.: Nuclear Physics B (Proc. Suppl.), 2 (1987), 97.

    Article  Google Scholar 

  68. Bensimon, D., Pumir, A., Shraiman, B.I.: J. Physique 50 (1989), 3089.

    Article  Google Scholar 

  69. Coullet, P., Gil, L., and Legs, J.: Transitions in Systems far from equilibrium, in: Chaos and complexity, (Eds. R. Livi et al.) World Scientific, 1988.

    Google Scholar 

  70. Kolodner, P., Surko, C.M., and Williams, H.L.: Physica. D 37 (1989), 319.

    Article  Google Scholar 

  71. Steinberg, V., Feinberg, J., Moses, E., and Rehberg, I.: Physica D 37 (1989), 359;

    Article  Google Scholar 

  72. Steinberg, V., Moses, E., and Fineberg, J.: Nuclear Physics B (Proc. Suppl.), 2 (1987), 109.

    Article  Google Scholar 

  73. Cross, M.C.: Phys. Rev. A 38 (1988), 3593.

    Article  MathSciNet  Google Scholar 

  74. Coullet, P., Fauve, S., and Tira.pegi, E.: J. Physique Lett. 46 (1985), L-787.

    Google Scholar 

  75. Mullin, T.: J. Fluid Mech. 121 (1982), 207.

    Article  Google Scholar 

  76. Fenstermacher, P.R., Swinney, H.L., and Gollub, J.P.: J. Fluid Mech. 94 (1979), 103.

    Article  Google Scholar 

  77. Newhouse, S., Ruelle, D., and Takens, F.: Commun. Math. Phys. 64 (1978), 35.

    Article  MathSciNet  MATH  Google Scholar 

  78. Brandstäter, A., Swift, J., Swinney, H.L., Wolf, A., Farmer, J.D., Jen, E., and Crutchfield, P.J.: Phys. Rev. Lett. 51 (1983), 1442.

    Google Scholar 

  79. Andereck, C.D., Liu, S.S., and Swinney, H.L.: J. Fluid Mech. 164 (1986), 155.

    Article  Google Scholar 

  80. see, e.g., Chossat, P., and Iooss, G.: Japan J. of Appl. Math. 2 (1985), 37. A book entitled: The Taylor-Couette problem is in preparation by the same authors.

    Google Scholar 

  81. Hegseth, J.J., Andereck, C.D., Hayot, F., and Pomeau, Y.: Phys. Rev. Lett. 62 (1989), 257.

    Article  Google Scholar 

  82. Bayly, B.J., Orszag, S.A., and Herbert, T.: Instability mechanisms in shear flow transition, Annual Review of Fluid Mechanics 20 (1988), 359.

    Article  Google Scholar 

  83. Chomaz, J.M., Huerre, P., and Redekopp, L.G.: Phys. Rev. Lett. 60 (1988), 25.

    Article  Google Scholar 

  84. Ho, C.-H. and Huerre, P.: Perturbed free shear layers, Annual Review of Fluid Mechanics 16 (1984), 365.

    Article  Google Scholar 

  85. Oertel Jr., H.: Wakes behind blunt bodies, Annual Review of Fluid Mechanics 22 (1990), 539.

    Article  MathSciNet  Google Scholar 

  86. Sreenivasan, K.R.: Transition and turbulence in fluid flows and low dimensional chaos, in [10].

    Google Scholar 

  87. Van Atta, C.W. and Gharib, M.: J.Fluid Mech. 174 (1987), 113.

    Google Scholar 

  88. Bonetti, M., Meynart, R., Boon, J.P., and Olivari, D.: Phys. Rev. Lett. 55 (1985), 492.

    Article  Google Scholar 

  89. Orszag, S.A. and Patera, A.T.: J. Fluid Mech. 128 (1983), 347.

    Article  MATH  Google Scholar 

  90. Schlichting, H.: Boundary Layer Theory, 7th edition, McGraw-Hill, 1979.

    Google Scholar 

  91. Herbert, T.: Secondary instability of boundary layers, Annual Review of Fluid Mechanics 20 (1988), 487.

    Article  Google Scholar 

  92. Saric, W.S. and Thomas, A.S.W.: Experiments on the subharmonic route to turbulence in boundary layers, in [26].

    Google Scholar 

  93. Aubry, N., Holmes, P., Lumley, J.L., and Stone, E.: J. Fluid ech. 192 (1988), 115.

    Article  MathSciNet  MATH  Google Scholar 

  94. Widnall, S.E.: Growth of turbulent spots in plane Poiseuille flow, in [26].

    Google Scholar 

  95. Itoh, N.: Landau coefficient of the Blasius boundary-layer flow, in [26].

    Google Scholar 

  96. Ottino, J.M.: Mixing, chaotic advection, and turbulence, Annual Review of Fluid Mechanics 22 (1990), 207.

    Article  MathSciNet  Google Scholar 

  97. see, e.g., Gollub, J.P. and Solomon, T.H.: Complex particle trajectories and transport in stationary and periodic convective flows, in Chaos and related nonlinear phenomena: where do we go from here? (Ed. I. Procaccia) Plenum Press, 1987.

    Google Scholar 

  98. Van Dyke, M.: An album of fluid motion, The Parabolic Press, 1982.

    Google Scholar 

  99. Tennekes H. and Lumley, J.L.: A first course in turbulence, MIT-Press, 1972.

    Google Scholar 

  100. Wesfreid, J.E. and Zaleski, S., Eds.: Cellular structures in instabilities, Lect. Notes Phys. vol. 210 (Springer, 1984),.

    Google Scholar 

  101. Newell, A.C.: Chaos and turbulence: is there a connection? in: Perspective in nonlinear dynamics, (Eds. M.F. Shlesinger et al.), World Scientific, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Manneville, P. (1991). From Chaos to Turbulence in Fluid Dynamics. In: Szemplinska-Stupnicka, W., Troger, H. (eds) Engineering Applications of Dynamics of Chaos. International Centre for Mechanical Sciences, vol 319. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2610-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2610-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82328-6

  • Online ISBN: 978-3-7091-2610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics