Introduction into the Concepts of Chaos and Some Numerical Methods

  • E. J. Kreuzer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 319)


Chaotic dynamics are a vital area of applied mathematics, the implications of which are increasingly important in engineering sciences. This contribution starts by illustrating the fact that chaotic behavior is possible for a wide variety of systems. Following that the basic applied mathematical and numerical methods of chaotic dynamics are introduced: deterministic dynamical systems, Poincaré maps, flows and maps, and the concepts of attractors. Different possibilities to characterize chaotic motions will be discussed and the cell mapping method is introduced which has been developed recently and turned out to be quite useful in the determination of the global domains of attraction.


Periodic Solution Periodic Orbit Lyapunov Exponent Chaotic Dynamic Point Mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, R.H.; Shaw, C.: Dynamics — The Geometry of Behavior. Part I–IV. Santa Cruz, USA, Aerial Press, 1982–1988.Google Scholar
  2. Benettin, G.; Galgani, L.; Strelcyn, J.-M.: Kolmogrov Entropy and Numerical Experiments. In: Phys. Rev. A 14, (1976), 2338–2345.CrossRefGoogle Scholar
  3. Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M.: Lyapunov Characteristic Exponents for Smooth Dynamic Systems and for Hamilton Systems; A Method for Computing All of Them. In: Meccanica 15, (1980), 9–30.CrossRefMATHGoogle Scholar
  4. Berge, P.; Pomeau, Y.; Vidal, Ch.: Order within chaos — Towards a deterministic approach to turbulence. New York/...: John Wiley & Sons, 1984.MATHGoogle Scholar
  5. Bernussou, J.: Point Mapping Stability. Oxford/...: Pergamon Press, 1977.MATHGoogle Scholar
  6. Bestle, D.: Beurteilungskriterien für chaotische Bewegungen nichtlinearer Schwingungssysteme. Fortschritt-Berichte VDI-Z, Reihe 11, No. 100. Düsseldorf: VDI-Verlag, 1988.Google Scholar
  7. Bestle, D.: Analyse nichtlinearer dynamischer Systeme mit der Methode der Zellabbildung. Stuttgart: Universität, Inst. B für Mechanik, Stud-6, 1983.Google Scholar
  8. Bestle, D.: Analyse nichtlinearer dynamischer Systeme mit qualitativen und quantitativen Methoden. Stuttgart: Universität, Inst. B für Mechanik, Dipl-11, 1984.Google Scholar
  9. Bestle, D.; Kreuzer, E.: Analyse von Grenzzyklen mit der Zellabbildungsmethode. In: Z. Angew. Math. und Mech. 65, No. 4, (1985), T29 - T32.MATHGoogle Scholar
  10. Bestle, D.; Kreuzer, E.: A Modification and Extension of an Algorithm for Generalized Cell Map. In: Computer Methods in Applied Mechanics and Engineering, 59, (1986), 1–9.MathSciNetCrossRefMATHGoogle Scholar
  11. Chillingworth, D.R.J.: Differential Topology With, a View to Applications. London/...: Pitman Publ. 1976.MATHGoogle Scholar
  12. Coullet, P.; Tresser, C.: Itérations d’endomorphismes et group de renormalisation. In: J. de Phys. C5, (1978), 25–28.Google Scholar
  13. Crutchfield, J.; Farmer, D.; Packard, N.; Shaw, R.; Jones, G.; Donnelly, R.: Power Spectral Analysis of Dynamical Systems. In: Phys. Letters 76A, No. 1, (1980), 1–4.MathSciNetCrossRefGoogle Scholar
  14. Devaney, R.L.; Keen, L. (eds.): Chaos and fractals, the mathematics behind the computer graphics. Rhode Island: Amer. Mathematical Society, 1989.MATHGoogle Scholar
  15. Eckmann, J.-P.: Roads to Turbulence in Dissipative Dynamic Systems. In: Rev. of Mod. Phys. 53, No. 4, (1981), 643–654.MathSciNetCrossRefMATHGoogle Scholar
  16. Eckmann, J.-P.: Routes to Chaos With Special Emphasis on Period Doubling. In: chaotic Behavior of Deterministic Systems. Proc. of the Les Houches Summer School No. 36. Amsterdam/...: North-Holland, 1983, 455–510.Google Scholar
  17. Farmer, J.D.: Order within chaos. Univ. of California, Santa Cruse, Doctoral Diss., 1981.Google Scholar
  18. Farmer, J.D.: Information Dimension and the Probabilistic Structure of Chaos. In: Z. Naturforsch. 37a, (1982), 1304–1325.MathSciNetGoogle Scholar
  19. Feigenbaum, M.S.: quantitative Universality for a Class of Nonlinear Transformations. In: J. of Stat. Phys. 19, No. 1, (1978), 25–52.MathSciNetCrossRefMATHGoogle Scholar
  20. Feigenbaum, M.J.: The Onset Spektrum of Turbulence. In: Phys. Lett. 74 A, (1979), 375–378.Google Scholar
  21. Fróschle, C.: The Lyapunov characteristic exponents and applications. In: J. de Mécanique théoretique et appliquée, Numéro spécial, (1984), 101–132.Google Scholar
  22. Geist, K.; Parlitz, U.; Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. In: Progress of Theor. Phys. 83, (1990), 875–893.MathSciNetCrossRefMATHGoogle Scholar
  23. Grossmann, S.; Thomae, S.: Invariant Distribution and Stationary Correlation Functions of One-Dimensional Discrete Processes. In: Z. Naturforschung 32a, (1977), 1353–1363.MathSciNetGoogle Scholar
  24. Großmann, S.: Chaos — Unordnung und Ordnung in nichtlinearen Systemen. In: Phys. Bl. 39, No. 6, (1983), 139–145.CrossRefGoogle Scholar
  25. Guckenheimer, J.: Noise in chaotic systems, Nature 298, (1982), 358–361.CrossRefGoogle Scholar
  26. Guckenheimer, J.; Holmes, P.: Nonlinear Oscillations, Dynamic Systems, and Bifurcations of Vector Fields. New York/...: Springer Verlag, 1986.Google Scholar
  27. Holmes, J.P.: A Nonlinear Oscillator with a Strange Attractor. In: Phil. Trans. of Royal Soc. London, 292, (1979), 419–448.CrossRefMATHGoogle Scholar
  28. Hsu, C.S.: Cell-to-Cell Mapping, A Method of Global Analysis for Nonlinear Systems. New York/...: Springer-Verlag, 1987.CrossRefMATHGoogle Scholar
  29. Hsu, C.S.: A Theory of Cell-to-Cell Mapping for Nonlinear Dynamic Systems. In: J. of Appl. Mech. 47, (1980), 931–939.CrossRefMATHGoogle Scholar
  30. Hsu, C.S.: A Generalized Theory of Cell-to-Cell Mapping for Nonlinear Dynamic Systems. In: J. of Appl. Mech. 48, (1981), 634–642.CrossRefMATHGoogle Scholar
  31. Hsu, C.S.; Guttalu, R.S.: An Unravelling Algorithm for Global Analysis of Dynamic Systems: An Application of Cell-to-Cell Mappings. In: J. of Appl. Mech. 47, (1980), 940–948.MathSciNetCrossRefMATHGoogle Scholar
  32. Hsu, C.S.; Guttalu, R.S.; Zhu, W.H.: A Method of Analyzing Generalized Cell- Mappings. In: J. of Appl. Mech. 49, (1982), 885–894.MathSciNetCrossRefMATHGoogle Scholar
  33. Hsu, C.S.; Kim, M.C.: Statistics of Strange Attractors by Genalized Cell Mapping. In: J. of Statist. Phys. 38, (1985), 735–761.MathSciNetCrossRefMATHGoogle Scholar
  34. Jackson, E.A.: Perspectives of nonlinear dynamics. Cambridge/...: Cambridge University Press, 1989.CrossRefMATHGoogle Scholar
  35. Kaplan, J.; Yorke, J.: Chaotic Behavior of Multidimensional Difference Equations. In: Functional Differential Equations and Approximation of Fixed Points. Peitgen, H.-O.; Richter, P.H. (eds.). Berlin/...: Springer- Verlag, (1979), 228–237.CrossRefGoogle Scholar
  36. Kolmogorov, A.N.: On Conservation of Conditionally-Periodic Motions for a Small Change in the Hamilton Function. In: Dokl. Akad. Nauk SSSR 98, (1954), 525–530.MathSciNetGoogle Scholar
  37. Kreuzer, E.J.: Analysis of Chaotic Systems Using the Cell Mapping Approach. In: Ing.-Arch. 55, (1985), 285–294.CrossRefMATHGoogle Scholar
  38. Kreuzer, E.: Numerische Untersuchung nichtlinearer dynamischer Systeme. Berlin/...: Springer-Verlag, 1987.CrossRefMATHGoogle Scholar
  39. Lichtenberg, A.J.; Liebermann, M.A.: Regular and Stochastic Motion. New York/...: Springer-Verlag, 1983.CrossRefMATHGoogle Scholar
  40. Manneville, P.: Contribution in this volume, 1991.Google Scholar
  41. Melnikov, V.K.: On the Stability of the Center for Time-periodic Perturbations. In: Trans. Moscow Math. Soc. 12, (1963), 1–57.Google Scholar
  42. Moon, F.C.: Chaotic Vibrations — An introduction for applied scientists and engineers. New York/...: John Wiley & Sons, 1987.MATHGoogle Scholar
  43. Oseledec, V.I.: A Multiplicative Ergodic Theorem: Ljapunov Characteristic Numbers for Dynamic Systems. In: Trans Moscow Math. Soc. 19, (1968), 197–231.MathSciNetGoogle Scholar
  44. Parker, T.S.: Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. New York/...: Springer-Verlag, 1989.CrossRefMATHGoogle Scholar
  45. Pesin, Ya.B.: Characteristic Lyapunov Exponents and Smooth Ergodic Theory. In: Russ. Math. Surv. 32, (1977), 55–114.MathSciNetCrossRefGoogle Scholar
  46. Pomeau, Y.; Manneville, P.: Intermittent Transition to Turbulence in Dissipative Dynamical Systems. In: Commun. Math. Phys. 74, (1980), 189–197.MathSciNetCrossRefGoogle Scholar
  47. Ruelle, D.; Takens, F.: On the Nature of Turbulence. In: Commun. Math. Phys. 20, (1971), 167–192.MathSciNetCrossRefMATHGoogle Scholar
  48. Ruelle, D.: Small Random Perturbations of Dynamic Systems and the Definition of Attractors. Commun. Math. Phys. 82, (1981), 137–151.MathSciNetCrossRefMATHGoogle Scholar
  49. Schuster, H.G.: Deterministic Chaos. Weinheim: VCH Verlagsgesellschaft mbH, 1988.Google Scholar
  50. Seydel, R.: From Equilibrium to Chaos. New York/...: Elsevier, 1988.MATHGoogle Scholar
  51. Shaw, R.: Strange Attractors, Chaotic Behavior, and Information Flow. In: Z. Naturforsch. 36a, (1981), 80–112.MathSciNetMATHGoogle Scholar
  52. Sinai, Ya.: Über den Begriff der Entropie des dynamischen Systems (in russisch). In: Dokl. Akad. Nauk. SSSR 124, (1959), 768.MathSciNetMATHGoogle Scholar
  53. Thompson, J.M.T.; Stewart, H.B.: Nonlinear dynamics and chaos — Geometrical methods for engineers and scientists. Chichester/...: John Wiley & Sons, 1986.MATHGoogle Scholar
  54. Wiggens, S.: Global bifurcations and chaos — Analytical methods. New York/...: Springer-Verlag, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • E. J. Kreuzer
    • 1
  1. 1.Technical University Hamburg-HarburgHamburgGermany

Personalised recommendations