Waves in Superfluid Helium

  • W. Fiszdon
Part of the International Centre for Mechanical Sciences book series (CISM, volume 315)


A brief introduction to the basic hydrodynamic and thermodynamic properties and to quantum vortices is given. The two fluid flow equations are introduced. The second sound, temperature waves are considered, their specific properties and structure analysed. A brief account of third sound capillary and thin film waves waves as well as fourth sound waves is scetched. A geometrical treatment of the evolution of axisymmetric heat pulses is presented. The large influence of quantum turbulence on the evolution of second sound waves is illustrated analysing the evolution of moderate second sound heat pulses.


Shock Wave Sound Wave Vortex Line Heat Pulse Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Atkins, K.R., Liquid Helium. Cambridge University Press, (1959).Google Scholar
  2. Batchelor, G.K., AN Introduction to Fluid Dynamics. Cambridge University Press, (1967)Google Scholar
  3. Benneman, K.H., Ketterson, J.B. (eds.), The Physics of Liquid and Solid Helium. J.Wiley, (1976)Google Scholar
  4. Donnelly, R.J., Experimental Superfluidity. The Chicago University Press, (1967).Google Scholar
  5. Donnelly, R.J., Vortices in Helium 4. Cambridge University Press, (to be published in 1990 )Google Scholar
  6. Keller, W.E., Helium-3 and Helium-4. Plenum Press, (1969).Google Scholar
  7. Khalatnikov, I.M., Introduction to the Theory of Superfluidity. W.A. Benjamin, (1965).Google Scholar
  8. Landau, L.D., Lifshitz, E.M., Fluid Mechanics. Pergamon Press, (1959).Google Scholar
  9. London, F., Superfluids, Vol.II, Macroscopic Theory of Superfluid Helium. Dover Publications, (1954).zbMATHGoogle Scholar
  10. Putterman, S.J., Superfluid Hydrodynamics. North Holland, (1974).Google Scholar
  11. Sachdev, P.L., Nonlinear Diffusive Waves. Cambridge University Press, (1987)Google Scholar
  12. Van Sciver, S.W., Helium Cryogenics. Plenum Press. (1986).Google Scholar
  13. Whitham, G.B., Linear and Nonlinear Waves. J.Wiley, (1974).Google Scholar
  14. Wilks, J. The Properties of Liquid and Solid Helium. Clarendon Press, (1967).Google Scholar
  15. Wilks, J., Betts, P.S., An Introduction to Liquid Helium. Clarendon Press, (1987)Google Scholar


  1. Adamenko, I.M., First and Second Sound Dispersion in Cylindrical Capillaries Filled with HeII (in Ukranian). Ukranian Physical Journal 13, (1968), 1001–1009.Google Scholar
  2. Atkin, R.J., Fox, N., Non Linear Waves in Helium II. J. Phys.: Solid State Phys. C16, (1983), 1615–1629.Google Scholar
  3. Atkin, R.J., Fox N., Thermal Shock Structure in Superfluid Helium. J. Phys.: Solid State Phys. C20, (1987), 1937–1946Google Scholar
  4. Atkins, K.R., Helium Films. Prog. Low Temp. Phys. II, (1959), 104–107.Google Scholar
  5. Atkins, K.R., Rudnick, I., Third Sound. Prog. Low Temp. Phys.VI, (1970), 37–76.Google Scholar
  6. Campbell, L.J., Superfluid Film Flow. The Helium Liquid, Armitage et al.eds, (1975), 127–174.Google Scholar
  7. Donnelly, R.J., Swanson, C.E., Quantum Turbulence. J. Fluid Mech. 173, (1986), 387–429.CrossRefGoogle Scholar
  8. Fetter, A.L., Vortices and Ions in Helium. The Physics of Liquid and Solid Helium, (1976), 207–306.Google Scholar
  9. Feynman, R.P., Application of Quantum Mechanics to Liquid Helium. Prog. Low Temp. Phys. I, (1955), 17–53.Google Scholar
  10. Fiszdon, W., Schwerdtner, M,v., Influence of Quantum Turbulence on the evolution of Moderate Plane Second Sound Heat Pulses in Helium II. J. Low Temp. Phys. 75, (1989), 253–267.CrossRefGoogle Scholar
  11. Fiszdon, W., Peradzynski, Z., Stamm, G., The Evolution of Axisymmetric Rectangular Second Sound (heat) Pulses in Superfluid Helium. Phys. Fluids Al, (1989), 881–886.Google Scholar
  12. Geurst, J.A., Hydrodynamics of Quantum Turbulence in HeII: Vinen’s Equation Derived from Energy and Impulse of Vortex Tangle. Physica B 154 (1989), 327–343.CrossRefGoogle Scholar
  13. Glaberson, W.I., Donnelly, R.J., Structure, Distributions and Dynamics of Vortices in Helium. Prog. Low Temp. Phys. IX, (1986), 1–147.Google Scholar
  14. Gorter, C.J., Mellink, J.H., On the Irreversible Processes in Liquid Helium II. Physica 15, (1949), 285–304.CrossRefGoogle Scholar
  15. Hills, R.N., Roberts, P.H., Superfluid Mechanics for a High Density of Vortex Lines. Arch. Rat. Mech. Anal., 66, (1977), 43–71.CrossRefzbMATHMathSciNetGoogle Scholar
  16. Iznakian, A.Yu., Mezhov-Deglin, L.P., Shock Waves in Liquid Helium. Sov. Phys. JETP 57, (1983), 801–808.Google Scholar
  17. Langer, J.S., Reppy, J.D., Intrinsic Critical Velocities in Superfluid Helium. Prog. Low Temp. Phys.VI, (1970), 1–36.Google Scholar
  18. Liepmann, H.W., Laguna, G.A., Nonlinear Interactions in the Fluid Mechanics of Heliumll. Ann, Rev. Fluid Mech. 16, (1984), 139–177.CrossRefGoogle Scholar
  19. Liepmann, H.W., Torczynski, J.R., Shock Waves in Helium at Low Temperatures. Proc. XV Intern. Symp. on Shock Waves and Shock Tubes, (ed.) Bershader et al. Stanford University Press, (1986), 87–96.Google Scholar
  20. Nemirovskii, S.K., Propagation of Heat Pulses Generating Quantized Vortices in HeII. Sov. Phys. JETP. 64, (1986), 803–810.Google Scholar
  21. Nemirovskii, S.K., Lebedev, V.V., The Hydrodynamics of Superfluid Turbulence. Sov. Phys. JETP. 57, (1983), 1009–1016.Google Scholar
  22. Nemirovskii, S.K., Tsoi, A.N., Transient Thermal and Hydrodynamic Processes in Superfluid Helium. Cryogenics 29, (1989), 985–994.CrossRefGoogle Scholar
  23. Roberts, P.H., Donnelly, R.J., Superfluid Mechanics. Ann. Rev. Fluid Mech. 6, (1974), 179–225.CrossRefGoogle Scholar
  24. Rudnick, I., The Sounds of 4HeII, 75th Jubilee Conference on Helium-4, Armitage (ed.), World Scientific, (1983), 24–33.Google Scholar
  25. Schwarz, K.W., Turbulence in superfluid Helium: Steady homogeneous Counter-flow. Phys. Rev. B18, (1978), 24–33.CrossRefGoogle Scholar
  26. Schwarz, K.W., Three-dimensional Vortex Dynamics in Superfluid 4He: Homogeneous Superfluid Turbulence. Phys. Rev. B38, (1988), 2398–2417.CrossRefGoogle Scholar
  27. Schwerdtner, M.v., Stamm, G., Schmidt, D.W., Evolution of Superfluid Vortex Line Density Behind a Heat Pulse in Helium II. Phys. Rev. Lett. 63, (1989), 39–42.CrossRefGoogle Scholar
  28. Swanson, C.E., Donelly, R.J., Vortex Dynamics and Scaling in Turbulent Counter-flowing Helium II. J. Low Temp. Phys. 61, (1985), 363–399.Google Scholar
  29. Torczynski, J.R., Nonlinear Fourth Sound, Wave Motion 7, (1985), 487–501.CrossRefzbMATHGoogle Scholar
  30. Torczynski, J.R., On the Interaction of Second Sound Shock Waves and Vorticity in Superfluid Helium. Phys. Fluids, 27, (1984), 2636–2644.CrossRefGoogle Scholar
  31. Torczynskii, J.R., Shock Vortex Interactions in Superfluid Helium. Phys. Rev. B, 2165–2172.Google Scholar
  32. Tough, J.T., Superfluid Turbulence. Prog. Low Temp. Phys. VIII, (1982), 134–219.Google Scholar
  33. Turner, T.N., Second sound Shock Waves and Critical Velocities in Liquid Helium II. Ph.D. Thesis. California Institute of Technology. (1979).Google Scholar
  34. Turner, T.N., Using Second Sound Shock Waves to Probe the Intrinsic Critical Velocity of Liquid Helium. Phys. Fluids 26, (1983), 3227–3241.CrossRefGoogle Scholar
  35. Vinen, W.F., Mutual Friction in a Heat Current in Liquid Helium II. iii. Theory of Mutual Friction. Proc. Roy. Soc. Lond. A242, (1957), 493–515.CrossRefGoogle Scholar
  36. Williams, G.A., Packard, R.E., A Technic for Photographing Vortex Positions in Rotating Superfluid Helium. J. Low Temp. Phys. 39, (1980), 553–577.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • W. Fiszdon
    • 1
    • 2
  1. 1.Polish Academy of SciencesWarsawPoland
  2. 2.University of WarsawWarsawPoland

Personalised recommendations