Nucleation, Condensation and Evaporation in Waves and Jets

  • G. E. A. Meier
Part of the International Centre for Mechanical Sciences book series (CISM, volume 315)


In waves and jets of real fluids at states below the critical point phase transitions often occur. These processes are called condensation and evaporation depending on a growth or diminishing of the liquid phase (phase transition of the solid phase is not considered here). In a pressure- volume- temperature-diagram of states of such a fluid (see Fig I) the considered changes take place in the so-called two phase regime. When crossing the border of this regime, the phase boundary, nucleation occurs either on the liquid or the gas side. In the first case the bubble formation is called cavitation, in the second case the droplet formation is referred to as condensation. In both cases the initial process of nucleation up to a critical cluster of atoms or molecules is somewhat different from the later growth beyond the critical size to larger bubbles or droplets. For substances with high molar specific heat some general differences exist in the adiabatic flow process with rapid and large state changes. Because of the different shape of the phase boundary (see Fig 2). surprising phenomena become possible. An expansion flow in a nozzle starting from a superheated liquid state can lead to pure gas flow with supersonic velocities. Otherwise a shock wave in a gas like octane can liquefy this gas completely and the shock wave becomes the surface of a liquid. The instantaneous formation of a liquid surface by circumvention of the normal nucleation process is not yet understood. Thus, it is especially interesting to investigate waves and jets in fluids of high specific heat.


Shock Wave Nucleation Rate Expansion Wave Bubble Radius Laval Nozzle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Bode: Spontane Kavitation hinter starken Expansionswellen, Max-Planck-Institut für Strömungsforschung, Göttingen, Bericht 110/1987Google Scholar
  2. M. Bratos, G.E.A. Meier: Shock Wave Induced Condensation in Retrograde Vapor Archieves of Mechanics, 31, 5, pp. 679–693, Warszawa 1979zbMATHGoogle Scholar
  3. M. Bratos, G.E.A. Meier: Two-dimensional, Two-phase Flows in a Laval Nozzle with Nonequilibrium Phase Transition Arch. of Mech., 28, 5–6, pp. 1025–1037, Warszawa 1976Google Scholar
  4. R. Brown, J.L. York: Sprays Formed by Flashing Liquid Jets A.I.Ch.E. Journal, Vol 8, Not, pp. 149–153Google Scholar
  5. H. Chaves: Expansion Waves in Retrograde Fluids MPI, Bericht 7/1981Google Scholar
  6. H. Chaves: Phase Transitions and Waves in the Expansion of Fluids of High Specific Heat MPI, Bericht 77/1984Google Scholar
  7. H. Chaves et al.: Adiabatic Phase Transitions and Wave Splitting in Fluids of High Specific Heat, in: G.E.A. Meier, F. Obermeier (eds.): Flow of Real Fluids, Springer 1985Google Scholar
  8. H. Chaves et al.: Similarity in the Behavior of Initially Saturated or Subcooled Liquid Lets Discharging Through a Nozzle, Chem. Phys. 126, 1988, pp. 137–143CrossRefGoogle Scholar
  9. A. Dillmann: Theorie der homogenen Nukleation übersättigter Dämpfe MPI, Bericht 93/1984Google Scholar
  10. A. Dillmann, G.E.A. Meier: Homogeneous Nucleation of Supersaturated Vapors Chem. Phys. Letters 160, 1989, pp. 71–74CrossRefGoogle Scholar
  11. G. Gyarmarthy, in: G.F. Hewitt, J.M. Delahaye and N. Zuber (eds): Multiphase science and technology Vol 1, Hemispere, Washington, 1982, pp. 99Google Scholar
  12. RE. Henry, H.K. Fauske: The Two-phase Critical Flow of One Component Mixtures in Nozzles, Orifices and Shock-tubes, Journal of Heat Transfer, May 1971, pp. 179–187Google Scholar
  13. W.H. Isay: Kavitation, Schiffahrtsverlag “Hansa”, Hamburg 1984Google Scholar
  14. Kurschat: Vollständige adiabatische Verdampfung stark überhitzter Flüssigkeitsfreistrahlen, MPI, Bericht 95/1990Google Scholar
  15. J.H. Lienhard, J.B. Day: The Breakup of Superheated Liquid Jets, Journal of Basic Engineering, Sept. 1970, pp. 515–521Google Scholar
  16. G.E.A. Meier: The Gas dynamics of Fluids of High Specific Heat MPI, Bericht 89/1987Google Scholar
  17. R.D. Oza, J.F.Sinnamon: An Experimental and Analytical Study of Flash-boiling Fuel Injection SAE technical paper series No 830590Google Scholar
  18. M. Rein: Numerical Investigation of the Dynamics of Heterogeneous Shock-cavitation Max-Planck-Institut für Strömungsforschung, Bericht 86/1987Google Scholar
  19. J.F. Shepard, B. Sturtevant: Rapid Evaporation at the Superheat Limit JFM, 1982, vol. 121, pp. 379–402Google Scholar
  20. R.A. Sigsbee: Vapor to Condensed-Phase Heterogeneous Nucleation in: A.C. Zettlemoyer(Ed.): Nucleation Dekker, New-York 1969Google Scholar
  21. H.-D. Speckmann: Spontane Kondensation von retrograden Gasen bei Verdichtungsstößen MPI, Bericht 21/1978Google Scholar
  22. H.-D. Speckmann: Aufspaltung von Kondensationswellen in Fluiden hoher spezifischer Dichte MPI, Bericht 76/1984Google Scholar
  23. H. Tacke: Lavaldüsenströmung eines binären retrograden Gemenges JFM, Vol 185, 1987, pp. 385–414Google Scholar
  24. P.A. Thompson et al.: Wave Splitting in a Fluid of Large Heat Capacity JFM, 1987, vol 185, pp. 385–414Google Scholar
  25. W. Traupel: Thermische Turbomaschinen Bd. 1 Springer, Berlin 1977CrossRefGoogle Scholar
  26. P.P. Wegener: Nonequilibrium Flow with Condensation Acta Mech., 1975, 21, pp. 65–91zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • G. E. A. Meier
    • 1
  1. 1.Max-Planck-InstitutGöttingenGermany

Personalised recommendations