Liquid-Vapor Adiabatic Phase Changes and Related Phenomena

  • P. A. Thompson
Part of the International Centre for Mechanical Sciences book series (CISM, volume 315)


Adiabatic phase changes in liquid-vapor systems are described experimentally and theoretically. The emphasis is on real systems, with departures from equilibrium (metastability). The phase changes are driven by pressure differences and tend to be rapid. Typically, the phase changes occur across shockfronts. Analog systems are also described. In the liquid-vapor systems, at least five distinct phase changes have been discovered within recent years. Several of the phenomena were not predicted in advance. The discoveries reported here were made by various researchers, including co-authors of this book.


Shock Wave Shock Tube Wilson Line Shock Mach Number Condensation Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thompson, P.A. and D.A. Sullivan: On the possibility of complete condensation shock waves in retrograde fluids, J. Fluid Mech., 70, 4 (1975), 639–649.CrossRefGoogle Scholar
  2. 2.
    Dettleff, G., P.A. Thompson, G.E.A. Meier and 11.-D. Speckmann: An experimental study of liquefaction shock waves, J. Fluid Mech., 95, 2 (1979), 279–304.CrossRefGoogle Scholar
  3. 3.
    Dettleff, G., G.E.A. Meier, B.-D. Speckmann, P.A. Thompson and C. Yoon: Experiments in shock liquefaction, in: Proc. 13th Int’l Symp. on Shock Tubes and Waves, (Ed. C.E. Trainor and J.G. Hall ), State Univ. of New York Press, 1982.Google Scholar
  4. 4.
    Thompson, P.A. and Y.-G. Kim: Direct observation of shock splitting in a vapor-liquid system, Phys. Fluids 26, 11 (1983), 3211–3215.CrossRefGoogle Scholar
  5. 5.
    Speckmann, H.-D.: Aufspaltung von kondensationsstoßwellen in fluiden hoher spezifischer Wärme, Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung (Herausgegeben von E.-A. Müller) 76 (1984).Google Scholar
  6. 6.
    Thompson, P.A., Y.-G. Kim and G.E.A. Meier: Flow visualization of a shock wave by simple refraction of a ruled background grid, in: Optical Methods in Dynamics (Ed. M. Pichal ), Springer-Verlag, Berlin 1984, 225–231.Google Scholar
  7. 7.
    Thompson, P.A. and K.C. Lambrakis: Negative shock waves, J. Fluid Mech., 60, 1 (1973), 187–208.CrossRefMATHGoogle Scholar
  8. 8.
    Cramer, M.S. and A. Kluwick: On the propagation of waves exhibiting both positive and negative nonlinearity, J. Fluid Mech., 142 (1984), 9–37.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Thompson, P.A., G.C. Carofano and Y.-G. Kim: Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube, J. Fluid Mech., 166 (1986), 57–92.CrossRefMATHGoogle Scholar
  10. 10.
    Borisov, A.A., A1.A. Borisov, S.S. Kutateladze and V.E. Nakoryakov: Rarefaction shock wave near the critical liquid vapour point, J. Fluid Mech., 126 (1983), 59–73.CrossRefGoogle Scholar
  11. 11.
    Slemrod, M.: Korteweg theory and van der Waals fluids, in: Adiabatic Waves in Liquid-Vapor Systems (Ed. G.E.A. Meier and P.A. Thompson) Springer-Verlag, Berlin 1990. To appear.Google Scholar
  12. 12.
    Chaves, H.: Phasenübergänge und Wellen bei der Entspannung von Fluiden hoher spezifscher Wärme, Dissertation, Georg-August-Universität, Göttingen, 1980.Google Scholar
  13. 13.
    Skripov, V.P. and P.A. Pavlov: Superheating and explosive boiling of liquids, Sov. Tech. Rev. B. Thermal Physics, 2, (1989).Google Scholar
  14. 14.
    Skripov, V.P.: Metastable Liquids, John Wiley, New York 1974.Google Scholar
  15. 15.
    Lighthill, M.J.: Viscosity effects in waves of finite amplitude, Surveys in Mechanics (Ed. G.K. Batchelor & R.M. Davies ), Cambridge University Press 1956.Google Scholar
  16. 16.
    Thompson, P.A.: Compressible Fluid Dynamics, Rosewood Press, Troy, New York 1972.Google Scholar
  17. 17.
    Thompson, P.A.: A Fundamental derivative in gasdynamics, Phys. Fluids, 14, (1971), 1843–1849.CrossRefMATHGoogle Scholar
  18. 18.
    Lambrakis, K.C.: Negative-r fluids, Dissertation, Rensselaer Polytechnic Institute 1972.Google Scholar
  19. 19.
    Thompson, P.A., G.C. Carofano, and Y.-G. Kim: Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube, J. Fluid Mech., 166 (1986), 57–92.CrossRefMATHGoogle Scholar
  20. 20.
    Planck, M.: Treatise on Thermodynamics, Longmans-Green, 1903, 150–152.Google Scholar
  21. 21.
    Van der Waals, J.D.: Lehrbuch der Thermodynamik, Bearbeitet von Ph. Kohnstamm, Maas und Van Suchtelen, Leipzig 1908.Google Scholar
  22. 22.
    Bethe, H.A.: The theory of shock waves for an arbitrary equation of state, Office of Scientific Research and Development, Washington, Report No. 575 (1942), 57.Google Scholar
  23. 23.
    Zel’ dovich, Ya.B.: On the possibility of rarefaction shock waves, Zh. Eksp. Teor. Fiz., 4 (1946), 363–364.Google Scholar
  24. 24.
    Landau, L.D. and E.M. Lifshitz: Fluid Mechanics (1959) Pergamon, 496.Google Scholar
  25. 25.
    Thompson, P.A., Y.-G. Kim and G.E.A. Meier: Shock-tube studies with incident liquefaction shocks, in: Proceedings of the 14th Int’l. Symp. Shock Tubes and Waves, University of Sydney, Australia 1984, 413–420.Google Scholar
  26. 26.
    Thompson, P.A., H. Chaves, G.E.A. Meier, Y.-G. Kim and H.-D. Speckmann: Wave splitting in a fluid of large heat capacity, J. Fluid Mech., 185 (1987), 385–414.CrossRefGoogle Scholar
  27. 27.
    Chen, G., P.A. Thompson and J.W. Bursik: Soundspeed measurements in vapor-liquid mixtures behind shock waves, Exp. in Fluids, 4 (1986), 279–282.CrossRefGoogle Scholar
  28. 28.
    Borisov, A.A., Al.A. Borisov, S.S. Kutateladze and V.E. Nakoryakov: Rarefaction shock wave near the critical liquid vapour point, J. Fluid Mech., 126 (1983), 59–73.CrossRefGoogle Scholar
  29. 29.
    Kutateladze, S.S., V.E. Nakoryakov and A.A. Borisov: Rarefaction waves in liquid and gas-liquid media, Ann. Rev. of Fluid Mech., 19 (1987), 577–600.CrossRefGoogle Scholar
  30. 30.
    Zauner, E. and G.E.A. Meier: Phase changes of a large-heat-capacity fluid in transcritical expansion flows, in: Adiabatic Waves in Liquid-Vapor Systems (Ed. G.E.A. Meier and P.A. Thompson) Springer-Verlag, Berlin 1990. To appear.Google Scholar
  31. 31.
    Thompson, P.A., Y.-G. Kim, C.J. Yoon and Y. Chan: Nonequilibrium, near-critical states in shock-tube experiments, in: Proceedings 16th Int’l. Symp. on Shock Tubes and Waves (Ed. H. Grönig ), VCH, Weinheim, Federal Republic of Germany, 1988, 342–349.Google Scholar
  32. 32.
    Menikoff, R. and B.J. Plohr: Riemann problem for fluid flow of real materials, Rev. Mod. Phys., 61, 1989, 75.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Hobbs, D.E.: A virial equation of state utilizing the principle of corresponding states. Dissertation, Rensselaer Polytechnic Institute 1983.Google Scholar
  34. 34.
    Kontorovich, V.M.: Concerning the stability of shock waves, Sov. Phys: Tech. Phys., 6 (1957), 1179–1181.Google Scholar
  35. 35.
    Fowles, G.R. and A.F.P. Houwing: Instability of shock and detonation waves, Phys. Fluids, 27, (1984), 1982–1990.CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Teshukov, V.M.: Stability of shock waves and general equations of state, in: Adiabatic Waves in Liquid-Vapor Systems (Ed. G.E.A. Meier and P.A. Thompson) Springer-Verlag, Berlin 1990. To appear.Google Scholar
  37. 37.
    Shepherd, J.E., P.A. Thompson and H.-J. Cho: Alternating stability and instability of liquefaction shockfronts in 2,2,4-Trimethylpentane, To appear in: Proceedings 17th Int’l Symp. on Shock Waves and Shock Tubes, held July 17–21, Lehigh University, Bethlehem, Pennsylvania 1989.Google Scholar
  38. 38.
    Schneer, G.: 2-D transonic flow with energy supply by homogeneous condensation: Onset condition and 2-D structure of steady Laval nozzle flow, Exp. in Fluids, 7 (1989), 145–156.CrossRefGoogle Scholar
  39. 39.
    Hobbs, David E.: Private communication 1982.Google Scholar
  40. 40.
    Prandtl, L.: Remarks, Atti del V Convengno Volta, Reale Accademia d’Italia, Roma 558 (1936), 196–197.Google Scholar
  41. 41.
    Hermann, R.: Der Kondensationstoß in Überschall-Windkanaldüsen, Luftahrtforschung, 19 (1942), 201–209.Google Scholar
  42. 42.
    Traugott, S.: Private communication 1988.Google Scholar
  43. 43.
    Fujita, T. Theordore: The Downburst, Satellite and Mesometorology Research Project, Univ. of Chicago 1985.Google Scholar
  44. 44.
    Emanuel, Kerry A.: A similarity theory for unsaturated downdrafts within clouds, J. of Atmos. Sci., 38 (1981), 1541–1557.CrossRefGoogle Scholar
  45. 45.
    Srivastava, R.C.: A simple model of evaporatively driven downdraft: Application to microburst downdraft, J. of Atmos. Sci., 42 (1985), 1004–1023.CrossRefGoogle Scholar
  46. 46.
    Campbell, James F., Joseph R. Chambers and Christopher L. Rumsey: Observation of airplane flowfields by natural condensation effects, J. Aircraft, 26, 7 (1989).CrossRefGoogle Scholar
  47. 47.
    Schneer, G.H. and U. Dohrmann: Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation, AIAA Journal (1989), 89–1834.Google Scholar
  48. 48.
    Schneer, G.H. and 13. Dohrmann: Numerical investigation of nitrogen condensation in 2-D Transonic flows in cryogenic wind tunnels, in: IUTAM Symposium, Adiabatic Waves in Liquid-Vapor Systems, Göttingen, F.R. Germany 1990.Google Scholar
  49. 49.
    Grieve, Richard A.F.: Impact cratering on the Earth, Scientific American, 262, 4 (1990), 66–73.CrossRefGoogle Scholar
  50. 50.
    Silver, L.T. and P.H. Schultz: Geological implications of impacts of large asteroids and comets on the Earth, Geolog. Soc. Amer., special paper 190 (1982).Google Scholar
  51. 51.
    Sneck, H. James, P.A. Thompson, B.E. Hand, B.R. Meyer, Chen Ping: Modeling of the champagne effect, in: Fundamental Aspects of Gas-Liquid Flows, Amer. Soc. Mech. Engrs. FED-29, 1985.Google Scholar
  52. 52.
    Simoneau, R.J.: Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas. NASA Technical Paper 1839, Lewis Research Center, Cleveland, Ohio 1981.Google Scholar
  53. 53.
    Kling, G.W., M.A. Clark, H.R. Compton, J.D. Devine, W.C. Evans, A.M. Humphrey, E.J. Koenigsberg, J.P. Lockwood, M.L. Tuttle, and G.N. Wagner: The 1986 Lake Nyos gas disaster in Cameroon, West Africa, Science 236, (1987) 169–175.CrossRefGoogle Scholar
  54. 54.
    Stager, C.: Killer Lake, National Geographic, September Issue (1987) 404–420.Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • P. A. Thompson
    • 1
  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations