Skip to main content

Small-Amplitude Finite-Rate Waves in Fluids having both Positive and Negative Nonlinearity

  • Chapter
Nonlinear Waves in Real Fluids

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 315))

Abstract

The present study deals with weakly nonlinear progressive waves in which the local value of the fundamental derivative Γ changes sign. The unperturbed medium is taken to be at rest aucl in a state such that r is small and of the order of the wave amplitude. A weak shock theory is developed to treat inviscid motions in channels of constant and slowly varying area of crossection. Furthermore, the method of multiple scales is used to account for thermoviscous effects which are of importance inside shock layers and acoustic boundary layers. New phenomena of interest include shocks having sonic conditions either upstream or downstream of the shock, collisions between expansion and compression shocks and shocks which terminate at a finite distance from their origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayes, W.D. (1960) Gasdynamic discontinuities, Princeton Series on High Speed Aerodynamics and Jet Propulsion, Princeton University Press, Princeton, New Yersey.

    Google Scholar 

  2. Bethe, H.A. ( 1942) The theory of shock waves for auarbitrary equation of state, Office Sci.Res. & Dev.Rep. 545.

    Google Scholar 

  3. Zel’dovich, Ya.B. (1946) On the possibility of rarefaction shock waves, Zh. Eksp. Tear. Fiz. 4, pp. 363–364.

    Google Scholar 

  4. Thompson, P.A. and Lambrakis, K.C. (1973) Negative shock waves,. J.Fluid Mech., 60, pp. 187–208.

    Article  Google Scholar 

  5. Cramer, M.S. (1990) Negative Nonlinearity in Selected Flnorocarhons. Submitted to The Physics of Fluids (A).

    Google Scholar 

  6. Borisov, A.A., Borisov, ALA. Kuta.teladze, S.S. awl Nakoryakov, V.E. (1983) Rarefaction shock wave uear the critical liquid-vapour point. .J .Fluid Mer h. 126, pp. 59–73.

    Google Scholar 

  7. Cramer, M.S. and Kluwick A. (1984) On the propagation of waves exhibiting both positive and negative nonlinearity. J.Fluid Mech. 142, pp. 9–37.

    Google Scholar 

  8. Kynch, G.J. (1952) A Theory of Sedimentation. Trans. of the Faraday Soc. 48, pp. 166–176.

    Google Scholar 

  9. Slis, P.L., Willemse, Th.W., Kramers, H. (1959) The response of the level of a liquid fluidized bed to a sudden change in the fluidizing velocity. Appl.Sci.Res. Sed A, 8, pp. 209–218.

    Google Scholar 

  10. Germain, P. ( 1971) Progressive waves, 14th Ludwig-Prandtl-memoriallecture. Mannheim, Jahrbuch 1971 der DGLR, pp. 11–30.

    Google Scholar 

  11. Whitham, G.B. (1974) Linear and nonliner waves. John Wiley and Sons.

    Google Scholar 

  12. Lighthill, M.J. (1978) Waves in Fluids. Cambridge University Press.

    Google Scholar 

  13. Crighton, D.G. (1979) Model equations of nonlinear acoustics. Ann.Rev.Fluid Mech. 11, pp. 11–33.

    Google Scholar 

  14. Kluwick A. ( 1981) The analytical method of characteristics. Progress in Aerospace Sciences, 19, pp. 197–313.

    Google Scholar 

  15. Sachdev, P.L. (1987) Nonlinear diffusive waves. Cambridge University Press.

    Google Scholar 

  16. Lighthill, M.J. and Whitham, G.B. ( 1955) On kinematic waves: I. Flood movement in long rivers. Proc.Roy.Soc.Lond. A 299. 281–316.

    Google Scholar 

  17. Lax, P.D. (1971) Shock waves and entropy. In: Contributions to Nonlinear Functional Analysis ( ed. E.H.Zarantonello ), Academic Press. New York.

    Google Scholar 

  18. Germain, P. (1972) Advances in Applied Mechanics 12, pp. 131–184.

    Google Scholar 

  19. Lee-Bapty I.P. ( 1981) Ph.D. dissertation, Leeds University, England.

    Google Scholar 

  20. Crighton, D.G. (1982) Propagation of non-uniform shock waves over large distances. In: Proe. IUTAM Symp. on Nonlinear Deformation Waves ( ed. U. Nigul & J.Engdbrecht), Springer.

    Google Scholar 

  21. Lee-Ba.pty I.P. and Crighton, D.G. ( 1987) Nonlinear Wave Motion Governed by the Modified Burgers Equation. Phil.Trans.R.Soc.Lond. A. 323. pp. 173–209.

    Google Scholar 

  22. Kluwick, A. and Koller, F ( 1988) Ausbrcitung periodischer Wellen kleiner Amplitude in Gasen mit grossen spellifisehen Wacnnen. ZAMM 68 ( 1988) 5. T 306- 307.

    Google Scholar 

  23. Cramer, M.S., Kluwick, A. Watson, L.T. and Pelz, W. (1986) Dissipative waves in fluids having both positive and negative nonlinearity, J.Fluid Mech. 169, pp. 329–336.

    Google Scholar 

  24. Cramer, M.S. (1987) Structure of weak shocks in fluids having embedded regions of negative nonlinearity. Phys.Fluids 30, pp. 3034–3044.

    Google Scholar 

  25. Shannon, P.T. and Tory, E.M. (1965) Settling of slurries. Ind. Engng. Chern. 57, pp. 18–25.

    Google Scholar 

  26. Thompson, P.A., Chaves, H., Meier, G.E.A., Kim, Y.G. and Speckmann, H.D. (1987) Wave splitting in a fluid of large heat capacity. J. Fluid Mech. 185, pp. 385–414.

    Google Scholar 

  27. Cramer, M.S. and Crickenberger, A.B. (1990) The Dissipative Structure of Shock Waves in Dense Gases. Submitted to J. Fluid Mech.

    Google Scholar 

  28. Varley, E. and Cumberbatch, E. (1966) Non-linear, high frequency sound waves. J.Inst. Maths. Applies., 2, pp. 133–143.

    Google Scholar 

  29. Kluwick, A., Czemetschka, E. (1989) Kugel- und Zylinderwellen in Medien mit positiver und negativer Nichtlinearität, GAMM-Tagung Karlsruhe, BRD. 28–1. 3. 1989.

    Google Scholar 

  30. McKittrick, J.L.; Blackstock, D.T. and Wright, W.M. (1967) Profile of repeated shock waves in a tube. J.Acoust.Soc.Amer. 42, pp. 1153.

    Google Scholar 

  31. Blackstock, D.T. (1972) Nonlinear Acoustic (Theoretical), in: Amer. Inst. Phys. Handbook, D. Gray Ed. (McGraw-Hill Book Co., Inc., New York), ch 3n, pp. 3–183 through 3–205.

    Google Scholar 

  32. Chester, W. (1969) Resonant oscillations in closed tubes, .J. Fluid Mech.. 18. pp. 44–64.

    Google Scholar 

  33. Keller, J.J. (1981) Propagation of simple non-linear waves in gas filled tubes with friction. ZAMP 32, pp. 170–181.

    Google Scholar 

  34. Pestorius, F.M. (1973) Propagation of plane acoustic noise of finite amplitude. Technical Report, Applied Research Laboratories, The Uni. of Texas at Austin, ARL-TR-73-23.

    Google Scholar 

  35. Gittler, Ph. and Kluwick, A. (1989) Dispersive Wandreibungseffekte bei horhfrequenten Wellen in gasgefüllten Rohren, ZAMM 69, 6, T 578- T 579.

    Google Scholar 

  36. Kluwick, A. and Gittler, Ph. (1989) Dispersive wall-friction effects on high frequency waves in media having both positive and negative nonlinearity, Proceed. of the Euromech Colloquium 240, Dispersive waves in dissipative fluids, Bologna, Italy, August 30- September 2, 1988, pp. 34–37.

    Google Scholar 

  37. Nimmo, J.J.C. and Crighton, D.G. (1982) Backlund transformations for nonlinear parabolic equatious: the general results. Proc.Roy.Soc.Loud. A 384, pp. 381–401.

    Google Scholar 

  38. Gittler, Ph. and Kluwick, A. (1990) Ou the propagation of weakly nonlinear high frequency waves in tubes filled with dense gases, to be published.

    Google Scholar 

  39. Kuwick, A. (1990) Weakly uonliuear progressive waves having mixed nonlinearity, to be published.

    Google Scholar 

  40. Sen, and Cramer, Ivi.S. ( 1987) A General Scheme for the Derivation of Evolution Equations Describing Mixed Nonlinearity, VPI- E-87 -16 Report.

    Google Scholar 

  41. Cramer, M.S. and Sen ( 1990) The Equation Governing Mixed Nonlinearity aml Double-Shocks in Superfluid Helium, submitted to .J. Fluid Mech.

    Google Scholar 

  42. Kluwick, A. ( 1990) Weakly nonlinear kinematic waves in suspensions of particles in fluids, Acta Mechanica, in press.

    Google Scholar 

  43. Richardson, .T.F., Zaki, W.N. (1954) Sedimentation and Fluidization: Part I., Traus. lust. Chcm. Engrs. 32, 35–53.

    Google Scholar 

  44. Verloop, .J., Hentjes. P.M., Lerk. L.A. (1974) The velocity and stability of large porosity fluctuations in homogeneous fluidized systems. Chem. Engng. Sci. 29. pp. 1109–1114.

    Google Scholar 

  45. Didwania, A., Homsy. G .M. ( 1980) Fluidization, ed. J.R. Grace and J.M. Matsen. Plenum 1980. pp. 109–116.

    Google Scholar 

  46. Kluwick. A. ( 1983) Small-amplitude Finite-rate Waves in Suspensions of Particles in Fluids, ZAMM 63, pp. 161–171.

    Google Scholar 

  47. Kurdyuomov, V.N. and Sergeev, Yu.A. ( 1987) Propagation of nonlinear Waves in a fluidized bed in the presence of interaction between the particles of the dispersed phase. Fluid Dynamics 22, No 2, pp. 235–242.

    Google Scholar 

  48. Crighton, D.G. ( 1991) Nonlinear waves in fluidized beds. In: Nonlinear Waves in Real Fluids (A. Kluwick, eel.), Springer Verlag 1991.

    Google Scholar 

  49. Kakutani, T. and Yamasaki, N. (1978) Solitary Waves on a Two-Layer Fluid. J. of the Physical Soc. of Japan, 45, pp 674–679.

    Google Scholar 

  50. Miles, J.W. (1979) On internal solitary waves. Tellus 31, pp. 456–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Kluwick, A. (1991). Small-Amplitude Finite-Rate Waves in Fluids having both Positive and Negative Nonlinearity. In: Kluwick, A. (eds) Nonlinear Waves in Real Fluids. International Centre for Mechanical Sciences, vol 315. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2608-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2608-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82277-7

  • Online ISBN: 978-3-7091-2608-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics