Shape Finding Methods of Shells

Part of the International Centre for Mechanical Sciences book series (CISM, volume 328)


Shell structures are usually extremely thin and therefore heavily rely on an almost pure membrane stress state. In order to guarantee this stress state the shape of the shell plays a dominant role in the initial design of the structure. The present paper compares the classical geometric shapes with free form shells and discusses several shape finding methods. The most prominent procedure is the deforming flexible membrane under a controlling load case like pressure or dead load. The method has been applied experimentally as well as analytically. Other methods start with a prescribed stress state and take the surface geometry as unknown. The procedure may be based on membrane equilibrium equations or force-density equivalents. Finally, optimization schemes are applied using e.g. the strain energy as an objective and bounding the stress state to certain limits. Several examples for this approach are given.


Shell Structure Load Case Free Edge Dead Load Flexible Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramm, E. and Schunck, E.: Heinz Isler — Schalen”. Karl Krämer Verlag, Stuttgart, 1986.Google Scholar
  2. 2.
    Isler, H.: New Shapes for Shells, Int. Colloquium on Construction, Processes of Shell Structures, TASS, Madrid, 1959.Google Scholar
  3. 3.
    Benvenuto, E.: An Introduction to the History of Structural Mechanics, Part II: Vaulted Structures and Elastic Systems, Springer, 1991.Google Scholar
  4. 4.
    Bramski,C.: Rotationssymmetrische tropfenförmige Behälter, W. Ernst zhaohuan Sohn, 1976.Google Scholar
  5. 5.
    Medwadowski, S. J.: The Interrelation between the Theory and the Form of Shells, Symp. Shell and Spatial Structures: the Development of Form, Morgantown, West Virginia, 1978, TASS-Bulletin, 70, August 1979.Google Scholar
  6. 6.
    Hunter, I.S. and Billington, D.P.: Computational Form Finding for Concrete Shell Roofs, ACI - Spring Convention, Boston, MA, March 1991.Google Scholar
  7. 7.
    Hildebrandt, S. and Tromba, A. Mathematics and Optimal Form, Scientific American Library, 1985.Google Scholar
  8. 8.
    Bletzinger, K.-U.: Formoptimierung von Flächentragwerken, Bericht 11 (1990), Institut für Baustatik, Universität Stuttgart, 1990.Google Scholar
  9. 9.
    Ramaswamy, G.S. and Rajasekaran, S.: Computer-Aided Form Generation of Funicular Shells, ACI - Spring Convention, Boston, MA, March 1991.Google Scholar
  10. 10.
    Kollegger, J. and Mehlhorn, G.: Analysis of a Free-Formed Reinforced Concrete Model Shell, in: Proceedings, 2nd Int. Conf. Computer Aided Analysis and Design of Concrete Structures. Pineridge Press, Swansea, UK, 1990.Google Scholar
  11. 11.
    Smith, P.G.: Membrane Shapes for Shell Structures, Ph.D. thesis, University of California, Berkeley, 1969.Google Scholar
  12. 12.
    Day, A.: A General Computer Technique for Form Finding for Tension Structures, Proceedings, TASS Symp. on Development of Form, Morgantown, West Virginia, 1978.Google Scholar
  13. 13.
    Scheck, H.J.: The Force Densities Method for Form Finding and Computation of General Networks, Comp. Meth. Appl. Mech. Engng., (1974), 115–134.Google Scholar
  14. 14.
    Haber, R.B. and Abel, J.F.: Initial Equilibrium Solution Methods for Cable Reinforced Membranes. Part I: Formulations; Part II: Implementation, Comp. Meth. Appl. Mech. Engng., 30 (1982), 263–284 and 285–306.Google Scholar
  15. 15.
    Pucher, A.: Uber den Spannungszustand in doppelt gekrümmten Flächen, Beton zhaohuan Eisen, 33 (1934), 298–304.Google Scholar
  16. 16.
    Korda, J.: Ribless Membrane Shells with Point Supports at the Corners, in: Int. Symp. on Shell Structures in Engineering Practice, Vol. I, Budapest, 1965, 179–190.Google Scholar
  17. 17.
    Csonka, P.: Point-Supported Shells with Free Boundary, Acta Technica Academiae Scientiarium Hungaricae, 75 (1973), 121–136.zbMATHGoogle Scholar
  18. 18.
    Alpa, G., Bozza, E., Corsanego, A. and Del Grosso, A.: Shan? Determination for Shell Structures on Pointlike Supports, TASS-Bulletin, 67, AugeGoogle Scholar
  19. 19.
    Berg, H.-G.: Tragverhalten und Formfindung versteifter Y schalen über quadra- tischem Grundriss auf Einzelstützen, Bericht 79–2, Institut tur Baustatik, Universität Stuttgart, 1979.Google Scholar
  20. 20.
    Kimmich, S.: Strukturoptimierung und Sensibilitätsanalyse mit finiten Elementen, Bericht 12 ( 1990 ), Institut für Baustatik, Universität Stuttgart, 1990.Google Scholar
  21. 21.
    Ramm, E., Bletzinger, K.-U. and Kimmich, S.: Trimming of Structures by Shape Optimization, in: Proceedings, 2nd Int. Conf. on Computer Aided Analysis and Design of Concrete Structures, Zell am See, Austria, April 1990, Pineridge Press, Swansea, U.K., 1990.Google Scholar
  22. 22.
    Ramm, E., Bletzinger, K.-U. and Kimmich, S.: Strategies in Shape Optimization of Free Form Shells”. In: Nonlinear Computational Mechanics - a State of the Art - (Eds. R Wriggers, W. Wagner ), Springer, 1991.Google Scholar
  23. 23.
    Isler, H.: Elegante Modelle–die moderne Form des Schalenbaus, db, 7 (1990), 62–65.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • E. Ramm
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations