Advertisement

Non Linear Finite Element Analysis of Concrete Shells

  • E. Oñate
Part of the International Centre for Mechanical Sciences book series (CISM, volume 328)

Abstract

This chapter deals with the non linear analysis of concrete shells using the finite element method. The finite element formulation is based on small displacements Reissner-Mindlin facet shell theory. Shear locking in dealt with by using an assumed shear strain approach. A layered model is used to take into account material non linearities in the plain concrete and the reinforcing steel over the shell thickness. A constitutive model for concrete based on plastic damage theory including stiffness degradation effects is presented. Details of the general non linear finite element solution are also given. A full section is devoted to the treatment of beam stiffeners using simple two noded layered Timoshenko beam elements and an example of this formulation to the analysis of a slab-beam bridge is also presented. The last section includes a number of examples of application of the finite element method to the non linear analysis of different plain and reinforced concrete shell-type structures like a deep beam, a slab-beam bridge, a cylindrical shell and a cryogenic concrete tank for storage of liquid gas.

Keywords

Shell Element Beam Element Timoshenko Beam Timoshenko Beam Theory Plastic Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASCE Committee on concrete and masonry structures, Task Committee on Finite Element Analysis of Reinforced Concrete Structures: A State-of-The-Art Report on Finite Element Analysis of Reinforced Concrete Structures, ASCE Spec. Pub., 1981.Google Scholar
  2. 2.
    W.C. Schnobrich, “Behaviour of reinforced concrete structures predicted by the finite element method”, Computers and Structures, Vol. 7, pp. 365–376, 1977.CrossRefGoogle Scholar
  3. 3.
    J.H. Argyris, G. Faust, J. Szimmat, E.P, Warnke and K.J. Wiliam, “Recent developments i the finite element analysis of stressed concrete reactor vessels”, Nuclear Engineering and Design, Vol. 28, pp. 42–75, 1974.CrossRefGoogle Scholar
  4. 4.
    P.G. Bergan and I. Boland, “Nonlinear finite element analysis of concrete structures”, Computer Methods in Applied Mechanics and engineering, Vol. 17/18, pp. 443–467, 1979.Google Scholar
  5. 5.
    K.H. Gerstle, “Material modelling of reinforced concrete”, Introductory Report, IABSE Colloqiuum on Advanced Mechanics of Reinforced Concrete, Delft. Volume-band 33, pp. 41–63, 1981.Google Scholar
  6. 6.
    D. Nod and A.C. Scordelis, “Finite element analysis of reinforced concrete beams”, American Concrete Institute Jounal, Vol. 6, No. 3, March, 1967.Google Scholar
  7. 7.
    L. Cedolin and S. Deipoli, “Finite element studies of shear—critical R/C beams, ASCE Journal of th Engineering Mechanics Division, Vol. 103, No. EM3, pp. 395–410, Jue 1977.Google Scholar
  8. 8.
    M.N. Fardis and O. Buyukortuk, “Shear stiffness of concrete by finite elements”, ASCE Journal pf the Structural Division, Vol. 106, No. ST6, pp. 1311–1327, June 1980.Google Scholar
  9. 9.
    Z.P. Bazant and L. Cedolin, “Fracture mechanics of reinforced concrete”, ASCE Journal of Eng. Mech. Division, Vol. 106, No.EM6, pp. 1287–13106, Decembe, 1980.Google Scholar
  10. 10.
    C.S. Lin, “Nonlinear analysis of reinforced concrete slabs and shells”, PhD. Thesis, UC-SESM 73–7, university of California, April 1973.Google Scholar
  11. 11.
    F.R. Hand, D.A. Pecknold and W.C. Schnobrich, “Nonlinear layered analysis of RC Plates and Shels, ASCE Journal of Structural Division, Vol. 99, No. ST7, pp. 1491–1503, July, 1973.Google Scholar
  12. 12.
    G. Mueller, “Numerical problems in nonlinear analysis of reinforcd concrete”, report No. UC-SESM 77–5, University of California, Berkeley, September, 1977.Google Scholar
  13. 13.
    H.H.A. Rahman, “Computational models for the nonlinear of reinforced concrete flexural slab systems”, Ph. D Thesis, C7Ph/66/82, University of Wales, May, 1982.Google Scholar
  14. 14.
    O.C. Zienkiewicz, and R.L. Taylor, “The Finite Element Method”, Fourth Edtion Mc.Graw Hill, Vol. I (1989), Vol I I (1991).Google Scholar
  15. 15.
    M. Crisfield, “Finite Element Method and Solution Procedures for Structural Analysis”, Pineridge Press, 1986.Google Scholar
  16. 16.
    J.A. Figueiras and D.R.J. Owen, “Analysis of elasto-plastic and geometrically non linear anisotropic plates and shells” In Finite Element Software for Plates and Shells, E. Hinton and D.R.J. Owen ( Eds. ), Pineridge Press, 1984.Google Scholar
  17. 17.
    D.R.J. Owen and J.A. Figueiras, “Ultimate load analysis of reinforced concrete plates and shells”, In Finite Element Software for Plates and Shells, E. Hinton and D.R.J. Owen ( Eds. ), Pineridge Press, 1984.Google Scholar
  18. 18.
    Zienkiewcz, O.C., Qu, S., Taylor, R.L. y Nakazawa,S., “The Patch test for mixed formulations”, Int. J. Num. Meth. Eng., Vol. 23, pp. 1873–1883, 1986.CrossRefGoogle Scholar
  19. 19.
    Huang, H.C. y Hinton, E., “A new nine node degenerated shell element with enhanced membrane and shear interpolation”, Int. J. Num. Meth. Eng., Vol. 22, pp. 73–92, 1986.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    H.C. Huang, “Static and Dynamic Analysis of Plates and Shells”, Springer Verlag, 1989.Google Scholar
  21. 21.
    E. Oñate, O.C. Zienkiewicz, B. Suárez, and R.L. Taylor, “A methodology for deriving shear constrained Reissner-Mindlin plate elements”, Int. Journal Numerical Methods Eng., 1991.Google Scholar
  22. 22.
    E. Reissner, “The effect of transverse shear deformation on the bending of elestic plates”, J. Appl. Mech., Vol. 12 pp. 69–76, 1945.MathSciNetGoogle Scholar
  23. 23.
    R.D. Mindlin, “Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates”, J. Appl. Mech., Vol. 18, pp. 31–38, 1951.MATHGoogle Scholar
  24. 24.
    E.N. Dvorkin and K.J. Bathe, “A continuum mechanics based four node shell element for general non-linear analysis”, Eng. Comp., Vol. 1, pp. 77–88, 1984.CrossRefGoogle Scholar
  25. 25.
    K.J. Bathe, `Finite Element procedures in engineering analysis”, Prentice Hall Inc., 1982.Google Scholar
  26. 26.
    Y.C. Fung, “Fundations of solid mechanics”, Prentice Hall Inc. 1965.Google Scholar
  27. 27.
    P.G. Bergan and I. Roland, “Nonlinear finite element analysis of concrete structures”, Computer Methods in Applied Mechanics and Engineering, Vol. 17/18, pp. 443–467, 1979.Google Scholar
  28. 28.
    K.H. Gerstle, “Material modelling of reinforced concrete”, Introductory Report, IABSE Colloqiuum on Advanced Mechanics of Reinforced Concrete, Delft. Volume-band 33, pp. 41–63, 1981.Google Scholar
  29. 29.
    H.A. Mang and H. Floegl, “Tension stiffening concept for reinforced concrete surface structres”, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, final Report, pp. 351–369, Delft, June, 1981.Google Scholar
  30. 30.
    H. Kupfer, K.H. Hilsdorf and H. Rush, “Behaviour of concrete under biaxial stresses”, Proceedings, American Concrete Institute, Vol. 66, No. 8, pp. 656–666, August 1969.Google Scholar
  31. 31.
    L.L. Mills and R. M. Zimmerman, “Compressive strength under multiaxial loading conditions”, ACI Journal Proc., Vol. 67, M-10, pp. 802–2087, Oct. 1970.Google Scholar
  32. 32.
    K.H. Gerstle et al. “Behaviour of concrete under multiaxial stress states”, ASCE Journal of Eng. Mech. Div., Vol. 106. No. EM6, pp. 1383–1403, December 1980.Google Scholar
  33. 33.
    H.B. Kupfer and K.K. Gerstle, “Behaviour of concrete under biaxial stresses”, ASCE Journal of the Eng. Mech. Div., Vol. 99, No. EM4, pp. 853–866, August 1973.Google Scholar
  34. 34.
    T.C.Y. Liu, A.H. Nilson and F.O. Slate, “Biaxial stress-strain relations for concrete”, ASCE Journal of the Structural Division, Vol. 98, No. ST5, pp. 1025–1034, May 1972.Google Scholar
  35. 35.
    L. Cedolin, Y.R.J. Crutzen and S. Deipoli, “Triaxial stress-strain relationship for concrete”, ASCE J. of the Eng. Mech. Div., Vol. 103, No. EM3, pp. 423–439, June 1977.Google Scholar
  36. 36.
    K.H. Gerstle, “Simple formulation of biaxial concrete behaviour”, ACI Journal, Vol. 78, pp. 62–68, Feb. 1981.Google Scholar
  37. 37.
    C.S. Lin and A.C. Scordelis, “Nonlinear analysis of BC shells of general form”, ASCE Journal of the Structural Division, Vol. 101, No ST3, pp. 523–538, March 1975.Google Scholar
  38. 38.
    A.C.T. Chen and W.F. Chen, “Constitutive relations for concrete”, ASCE Journal of the Eng. Mech. Div.Vol. 101, No. EM4, pp. 465–481, August 1973.Google Scholar
  39. 39.
    O. Buyukorturk, “Nonlinear analysis of reinforced concrete structures”, Computer and Structures, Vol. 7, pp. 149–156, 1977.CrossRefGoogle Scholar
  40. 40.
    Z.P. Bazant and P.D. Bhat, “Endochronic theory inelasticity and failure of concrete”, ASCE Journal of the Eng. Mech. Div., Vol. 102, No. EM4, pp. 701–722, August, 1976.Google Scholar
  41. 41.
    Z.P. Bazant and S.S. Kim, “Plastic-Fracturing theory for concrete”, ASCE Journal of The Eng. Mech. Div., Vol. 105, No. EM3, pp. 407–428., June 1979.Google Scholar
  42. 42.
    N.S. Ottosen, “A failure criterion for concrete”, ASCE Journal of Eng. MEch. Div., Vol. 103, No. EM4, pp. 527–535, 1977.Google Scholar
  43. 43.
    J. Wastiels, “Behaviour of concrete under multiaxial stresses a leview”, Cement and Concrete Research, Vol. 9, pp. 35–44, 1979.CrossRefGoogle Scholar
  44. 44.
    J. Wastiels, “Failure criteria for concrete subject to multiaxial stresses”, Lecture held at Univ. of Illinois at Chicago Circle, Dept. of Materials Eng., 1981.Google Scholar
  45. 45.
    C.S. Lin, “Nonlinear analysis of reinforced concrete slabs and shells”, PhD. Thesis, UC-SESM 73–7, university of California, April 1973.Google Scholar
  46. 46.
    W.F. Chen. “Plasticity in Reinforced Concrete “, McGraw—Hill Book Company, 1982.Google Scholar
  47. 47.
    D.R.J. Owen and J.A. Figueiras, “Ultimate load analysis of reiforced concrete plates and shells”, In Finite Element Software for Plates and Shells, E. Hinton and D.R.J. Owen (Eds.), Pineridge Press, 1984.Google Scholar
  48. 48.
    E. Andenaes, K. Gerstle and H.Y. Ko, “Response of mortar and concrete to biaxial compression”, ASCE Journal of Eng. Mech. Div., Vol. 103, No. EM4, pp. 515–526, 1977.Google Scholar
  49. 49.
    D.R.J. Owen and E. Hinton, “Finite Element in Plasticity”Theory and Practice, Pineridge Press, Swansea, U.K., 1980.Google Scholar
  50. 50.
    O.C. Zienkiewicz and R.L. Taylor, “The Finite Element Method”, Fourth Edition, Vol. I, 1989, Vol. II, 1991.Google Scholar
  51. 51.
    Y. Goto, “ Cracks formed in concrete around deformed tension bars”, ACI Journal, pp. 244–251, 1971.Google Scholar
  52. 52.
    H.H.A. Rahman, “Computatioal models for the nonlinear of reinforced concrete flexural slab systems”, Ph. D Thesis, C7Ph/66/82, University of Wales, May, 1982.Google Scholar
  53. 53.
    R.I. Gilbert and R.F. Warner, “ Tension stiffnening in reinforced concrete slabs”, ASCe Journal of the Structural Division, Vol. 104, No. ST12, pp. 1885–1900, 1978.Google Scholar
  54. 54.
    R.J. Cope, P.V. Rao, L.A. Clark and P. Norris, “Modelling of reinforced concrete behaviour for finite element analysis of bridge slabs”, Numerical Meth. for Nonlinear Problems, Vol. 1, Pineridge Press, Proceedings of the International Conference held at Univ. College of Swansea, pp. 457–470, 2–5 September, 1980.Google Scholar
  55. 55.
    A. Arnesen, S.L. Sorensen and P.G. Bergan, “Nonlinear analysis of Requirements for Reinforced Concrete”, A CI Standard 318–77, Building Code, American Concrete Institute, Detroit, 1977.Google Scholar
  56. 56.
    R.C. Fenwick and T. paulay, “Mechanics of shear resistence of concrete beams”, ASCE Journal of the Structural Division, Vol. 94, No. ST10, pp. 2325–2350, October 1968.Google Scholar
  57. 57.
    J.A. Hofbeck, I.O. Ibrahim and A.H. Mattock, “ Shear transfer in reinforced concrete”, ACI Journal, pp. 119–128, 1969.Google Scholar
  58. 58.
    Y.D. Hamadi and P.E. Regan, “Bahaviour in shear of beams with flexural cracks”, Magazine of Concrete Research, Vol. 32, No. 111, pp. 67–78, 1980.CrossRefGoogle Scholar
  59. 59.
    L. Cedolin and S. Deipoli, “Finite element studies of shear-critical R/C beams, ASCE Journal of the Engineering Mechanics Division, Vol. 103, No. EM3, pp. 395–410, Jue 1977.Google Scholar
  60. 60.
    F.R. Hand, D.A. Pecknold and W.C. Schnobrich, “Nonlinear layered analysis of RC Plates and Shels, ASCE Journal of Structural Division, Vol. 99, No. ST7, pp. 1491–1503, July, 1973.Google Scholar
  61. 61.
    Z. Bazant, “Mechanics of distributed cracking, Appl. Mech. Rev., Vol. 39, pp. 675–705, 1986.CrossRefGoogle Scholar
  62. 62.
    E. Oñate, J. Oliver and G. Bugeda, “Finite element analysis of nonlinear response of concrete dams subject to internal loads”Europe-US Symposium on Finite Element Methods for Nonlinear Problems, ( Edited by Bergan, Bathe and Wunderlich) Springer-Verlag, 1986.Google Scholar
  63. 63.
    S, Oller, “Un Modelo de dano continuo para materiales friccionales, Tesis Doctoral, Dept. De Estructuras, Univ. Politécnica de Catalunya, Barcelona, Espana, 1988.Google Scholar
  64. 64.
    J. Lubliner, S. Oller, J. Oliver and E. Ovate, “A plastic damage model for nonlinear analysis of concrete”, Int. J. Solids Struct., Vol. 25, 3, pp. 299–326, 1989.CrossRefGoogle Scholar
  65. 65.
    E. Oñate, S. Oller And J. Lubliner, “A constitutive model of concrete based on the incremental theory of plasticity”, Engng. Comput., Vol. 5, 4, 1988.Google Scholar
  66. 66.
    E. Oñate, S. Oller, J. Oliver and J. Lubliner, “A fully elastoplastic constititutive model nonlinear analysis of concrete, Proc. Second Int. Conf. Advances Methods in Numerical Methods in Engineering, Theory and Applications NUMETA (Edited by G. Pande and J. Middleton ). Martinus Nijhoff, Swansea, 1987.Google Scholar
  67. 67.
    E. Ovate, S. Oller and J. Lubliner, “A constitutive model cracking of concrete based on the incremental theory of plasticity”, in Proc. Int Conf. Computational Plasticity (Edited by D.R.J. Owen, E. Hinton and E. Orate), Part 2, pp 1311–1327, Pineridge Press, Barcelona, 1987.Google Scholar
  68. 68.
    R. De Borst and P. Verneer, “Non associated plasticity for soils, concrete and rock”, Heron 29, Delft, Netherlands, 1984.Google Scholar
  69. 69. J. Oliver, “A consisten characteristic length for smeared cracking models”, Commun, Appl. Num. Meth. in Engng.Google Scholar
  70. 70.
    M. Crisfield, “Finite element methods for non linear structural analysis”, J. Wiley, 1991.Google Scholar
  71. 71.
    J.G. Rots, P. Nauta, G. Kusters and J. Blaauwendraad, “Smeared crack approach and fracture localization in concrete”, Heron, Univ. Delft, The Netherlands, Vol. 30, 1985.Google Scholar
  72. 72.
    M. Arrea and A.R. Ingraffea, “Mixed mode crack propagation in mortar and concrete”, Cornell Univ., Dept. Struct. Engng Report 81–13, Ithaka, New York, 1981.Google Scholar
  73. 73.
    M.A. Crisfeld, “A fast incremental iterative solution procedure that handles snap—through”, Comp. and Struct., Vol. 13, pp. 55–62, 1981.CrossRefGoogle Scholar
  74. 74.
    S. Oller, E. Oñate y J. Oliver, “Un modelo de fisuración del hormigón basado en la teoría incremental de la plasticidad”, II Simposium sobre Aplicaciones del Método de los Elementos Finitos en Ingeniería, Universidad Politécnica de Cataluña, June 1986.Google Scholar
  75. 75.
    A. W. Wegmuller, “Overload behaviour of composite steel-concrete highway girder bridges”, School of Engineering, University of Alabama, Birmingham, October 1986.Google Scholar
  76. 76.
    P. Roca, “Un modelo de analisis no lineal para el estudio del comportamiento de estructuras laminares de hormigón pretensado”, Ph. D. Thesis, Universidad Politécnica de Cataluña, September 1988.Google Scholar
  77. 77.
    A. Arnesen, “Analysis of reinforced shells considering material and geometric non linearities”, Report No. 79–1, Division Struct. Mech., University Trondheim, Norway, July 1979.Google Scholar
  78. 78.
    A.L. Bouma, A.C. Van Riel, H. Van Koten and W.J. Beramek, “Investigations on models of eleven cylindrical shells mode on reinforced and prestressed concrete”, Proc. Symposium on Shell Research, Delft, North Holland Pub. Co., 79–101, 1961.Google Scholar
  79. 79.
    E. Oñate, J. Oliver, R. Chueca, J. Peraire and R. Albareda, “Non linear finite element analysis of cryogenic concrete tanks under thermal actions”, II Int. Conf. on Cryogenic Concrete, Amsterdam, 1983.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • E. Oñate
    • 1
  1. 1.Polytechnic University of CataluñaBarcelonaSpain

Personalised recommendations