Composite and Sandwich Shells

  • F. G. Rammerstorfer
  • K. Dorninger
  • A. Starlinger
Part of the International Centre for Mechanical Sciences book series (CISM, volume 328)


Finite shell elements for geometrically and materially nonlinear stress and stability analyses of layered fibre reinforced composite shells as well as sandwich shells with orthotropic core material are presented. The element formulations are based on the degeneration principle including large displacements with an efficient analytical thickness integration. Some micromechanical models are discussed which allow the estimation of over-all material laws used in the shell analyses. Examining suitable failure criteria and taking into account post-cracking, post-wrinkling and post-buckling stiffnesses allow for the investigation of progressive damage. Furthermore, anisotropic plasticity effects are taken into account for consideration of metal matrix composite (MMC) shells. Some computed examples and comparisons with experimental results illustrate that an extended range of composite specific-problems can be covered by these laminated and sandwich elements.


Critical Load Metal Matrix Composite Shell Element Fibre Reinforce Plastic Face Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorninger, K.: Entwicklung von nichtlinearen FE-Algorithmen zur Berechnung von Schalenkonstruktionen aus Faserverbundstoffen, Doctoral Thesis, Vienna Technical University, Austria; Fortschritt-Berichte, VDI Reihe 18, Nr. 65, VDI Verlag, Düsseldorf, FRG, 1989.Google Scholar
  2. 2.
    Dorninger, K.: A Nonlinear Layered Shell Finite Element With Improved Transverse Shear Behavior, Composites Engineering 1 (1991), 211–224.CrossRefGoogle Scholar
  3. 3.
    Svobodnik, A.J.: Numerical Treatment of Elastic-Platic Macromechanical Behavior of Longfiber-Reinforced Metal Matrix Composites, Doctoral Thesis, Vienna Technical University, Austria; Fortschritt-Berichte, VDI Reihe 18, Nr. 90, VDI Verlag, Düsseldorf, FRG, 1990.Google Scholar
  4. 4.
    Starlinger, A.: Development of Efficient Finite Shell Elements for the Analysis of Sandwich Structures Under Large Deformations and Global as Well as Local Instabilities, Doctoral Thesis, Vienna Technical University, Austria, 1990; Fortschritt-Berichte, VDI Reihe 18, Nr. 93, VDI Verlag, Düsseldorf, FRG, 1991.Google Scholar
  5. 5.
    CARINA - Computer Aided Research In Nonlinear Analysis; a Finite Element Program of the Institute of Lightweight Structures and Aerospace Engineering, Vienna Technical University, Vienna, Austria.Google Scholar
  6. 6.
    Rammerstorfer, F.G., K.Dorninger and A.Starlinger: Nonlinear Finite Element Analysis of Composite and Sandwich Shell Structures, in: Nonlinear Computational Mechanics - State of the Art (Ed. P. Wriggers and W. Wagner ), Springer-Verlag, Berlin, Heidelberg, 1991.Google Scholar
  7. 7.
    Ramm, E.: A Plate/Shell Element for Large Deflections and Rotations, in: Formulations and Computational Algorithms in Finite Element Analysis (Ed. K.J. Bathe, J.T. Owen, W. Wunderlich ), Proc. U.S.-German Symp., MIT, Cambridge, 1977.Google Scholar
  8. 8.
    Andelfinger U. and E.Ramm: An Assessment of Hybrid-Mixed Four-Node Shell Elements, in this book.Google Scholar
  9. 9.
    Dvorkin, E.N.: On Nonlinear Analysis of Shells Using Finite Elements Based on Mixed Interpolation of Tensorial Components, in this book.Google Scholar
  10. 10.
    Dorninger, K. and F.C. Rammerstorfer: A Layered Composite Shell Element for Elastic and Thermoelastic Stress and Stability Analysis at Large Deformations, Int. J. Num. Meths. Eng. 30 (1990), 833–858.CrossRefzbMATHGoogle Scholar
  11. 11.
    Anderson, R.S.: The Mechanical Properties of Fibre Reinforced Composite Plates, Doctoral Thesis, University of Aston, UK, 1977.Google Scholar
  12. 12.
    Niederstadt G., J.Block, B.Geier, K.Rohwer and R.Weiß: Leichtbau mit kohlenstoffaserverstärkten Kunststoffen, Expert Verlag, Sindelfingen, 1985.Google Scholar
  13. 13.
    Huang, C.-M. and D.C. Lagoudas: A Fortran Program for Effective Properties of Composite Materials Based on the Mori-Tanaka Scheme, Department of Mechanical Engineering and Mechanics and Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, NY, 1990.Google Scholar
  14. 14.
    Noor, A.K. and J.M. Peters: A Posteriori Estimates for Shear Correction Factors in Multilayered Composite Cylinders, J. Eng. Mechs. 115 (1989), 1225–1244.CrossRefGoogle Scholar
  15. Stanley, G.M.: Continuum-Based Shell Elements, Doctoral Thesis, Stanford University, Stanford, CA, 1985.Google Scholar
  16. 16.
    Ramm, E. and A. Matzenmiller: Large Deformation Shell Analysis Based on the Degeneration Concept, in: State-of-the-Art Texts on FEM for Plate and Shell Structures (Eds. T.J.R. Hughes and E. Hinton ), Pineridge Press, Swansea, UK, 1986.Google Scholar
  17. 17.
    Laschet, G., J.P. Jeusette and P. Beckers: Homogenization and Pre-Integration Techniques for Multilayer Composites and Sandwich Finite Element Models, Int. J. Num. Meths. Eng. 27 (1989), 257–269.CrossRefzbMATHGoogle Scholar
  18. 18.
    Chawla, K.K.: Composite Materials, Springer Verlag, New York, NY, 1987.CrossRefGoogle Scholar
  19. 19.
    Rammerstorfer, F.G.: Jump Phenomena Associated with the Stability of Geometrically Nonlinear Structures, in: Recent Advances in Non-Linear Computational Mechanics (Eds. E. Hinton, D.R.J. Owen and C. Taylor ), Pineridge Press, Swansea, UK, 1982.Google Scholar
  20. 20.
    Ziegler, F. and F.G. Rammerstorfer: Thermoelastic Stability, in: Thermal Stresses III (Ed. R.B. Hetnarski ), North-Holland, Amsterdam, 1989.Google Scholar
  21. 21.
    Ramm, E.: Geometrisch nichtlineare Elastostatik und finite Elemente, Habilitationsschrift, University of Stuttgart, FRG, 1975.Google Scholar
  22. 22.
    Wagner W.: Nonlinear Stability Analysis of Shells with the Finite Element Method, in this book.Google Scholar
  23. 23.
    Lehar, H.: Beitrag zur numerischen Behandlung ebener, anisotroper Schichtverbunde mittels Finite Elemente Methoden, Doctoral Thesis, University of Innsbruck, Austria, 1984.Google Scholar
  24. 24.
    Nemeth, M.P.: Importance of Anisotropy on Buckling of Compression-Loaded Symmetric Composite Plates, AIAA Journal 24 (1986), 1831–1835.CrossRefGoogle Scholar
  25. 25.
    Tauchert, T.R.: Thermal Stresses in Plates — Statical Problems, in: Thermal Stresses I (Ed. R.B. Hetnarski ), North-Holland, Amsterdam, 1986.Google Scholar
  26. 26.
    Hui, D.: Effects of Shear Loads on Vibration and Buckling of Antisymmetric Cross-Ply Cylindrical Panels, Int. J. Non-Linear Mechs. 23 (1988), 177–187.CrossRefzbMATHGoogle Scholar
  27. 27.
    Jing, H.-S. and M.-L. Liao: Partial Hybrid Stress Element for the Analysis of Thick Laminated Composite Plates, Int. J. Num. Meths. Eng. 28(1989), 2813–2827.CrossRefzbMATHGoogle Scholar
  28. 28.
    Li, Z.H. and D.R.J. Owen: Elastic-Plastic Analysis of Laminated Anisotropic Shells by a Refined Finite Element Laminated Model, Computers & Structures 32 (1989), 1005–1024.CrossRefzbMATHGoogle Scholar
  29. 29.
    Reddy, J.N.: On Refined Computational Models of Composite Laminates, Int. J. Num. Meths. Eng. 27 (1989), 361–382.CrossRefzbMATHGoogle Scholar
  30. 30.
    Pagano, N.J.: Exact Solutions for the Rectangular Bidirection Composites and Sandwich Plates, J. Appl. Mech. 51 (1970), 20–34.Google Scholar
  31. 31.
    Starlinger, A. and F.G. Rammerstorfer: Berücksichtigung von lokalem kurzwelligem Deckschichtbeulen in speziellen finiten Sandwich-Schlenelementen, ZAMM 71 (1991), T619–623.Google Scholar
  32. 32.
    Stamm K. and H. Witte: Sandwichkonstruktionen - Berechnung, Fertigung, Ausführung, Springer-Verlag, Wien, 1974.Google Scholar
  33. 33.
    Wiedemann J.: Leichtbau: Band 1 - Elemente, Springer-Verlag, Berlin, 1986.Google Scholar
  34. 34.
    Kühhorn, A.: Geometrisch nichtlineare Theorie für Sandwichschalen - Knitterphänomen, VDI-Verlag, Düsseldorf, FRG, 1991.Google Scholar
  35. 35.
    Pehn,W.: Entwicklung eines Versuchsaufbaus und experimentelle Untersuchungen zum lokalen Beulverhalten von Sandwichplatten, Heft ILFB-3/91 der Berichte aus dem Institut für Leichtbau und Flugzeugbau der TU Wien, Vienna Technical University, Vienna, 1991.Google Scholar
  36. 36.
    Dvorak, G.J. and Y.A. Bahei-El-Din: Plasticity Analysis of Fibrous Composites, J.Appl.Mech. 49 (1982), 327–335.CrossRefzbMATHGoogle Scholar
  37. 37.
    Svobodnik, A.J., H.J.Böhm and F.G.Rammerstorfer: A 3/D Finite Element Approach for Metal Matrix Composites Based on Micromechanical Models, Int. J. Plasticity 7 (1991), 781–802.CrossRefzbMATHGoogle Scholar
  38. 38.
    Starlinger A. and F.G.Rammerstorfer: A Finite Element Formulation for Sand-w çh Shells Accounting for Local Failure Phenomena, in: Proc. Second Int. Conf. on Sandwich Construction, March 9–12, 1992, Univ. of Florida, EMAS, Warley, UK, Vol. 1.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • F. G. Rammerstorfer
    • 1
  • K. Dorninger
    • 2
  • A. Starlinger
    • 3
  1. 1.Vienna Technical UniversityViennaAustria
  2. 2.Saturn Corp.TroyUSA
  3. 3.NASA Lewis Research CenterClevelandUSA

Personalised recommendations