An Assessment of Hybrid-Mixed Four-Node Shell Elements

  • U. Andelfinger
  • E. Ramm
Part of the International Centre for Mechanical Sciences book series (CISM, volume 328)


The most popular shell finite elements are shear flexible C0-continuous displacement models. These elements which are easy to formulate usually give displacements that are too small and in the extreme case (for instance thin plate or thin shell) exhibit severe stiffening, known as locking.


Strain Field Transverse Shear Displacement Model Element Stiffness Matrix Cylindrical Panel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andelfinger, U., Matzenmiller, A. and Ramm, E., “Hybrid-Mixed Four-Node Shell Elements, Different Two-Field Assumptions and a Stability Test”, in: Analytical and Computational Models of Shells (A.K. Noor et al., eds.), ASME Special Publication, 1989.Google Scholar
  2. 2.
    Andelfinger, U.: “Untersuchungen zur Zuverlässigkeit hybrid-gemischter Finiter Elemente für Flächentragwerke”, Dissertation, Institut für Baustatik, Universität Stuttgart, 1991.Google Scholar
  3. 3.
    Bathe, K. J. and Dvorkin, E. N., “A Four-Node Plate Bending Element Based on Mindlin/Reissner Theory and a Mixed Interpolation”, Int. J. for Numerical Methods in Engineering, 21 (1985), 367–383.CrossRefzbMATHGoogle Scholar
  4. 4.
    Brezzi, F. and Bathe, K. J., “A Discourse on the Stability Conditions for Mixed Finite Element Formulations”, Computer Methods in Applied Mechanics and Engineering (in print).Google Scholar
  5. 5.
    Dvorkin, E. N. and Bathe, K. J., “A Continuum Mechanics Based Four-Node Shell Element for General Nonlinear Analysis”, Engineering Computations, No. 1 (1984) 77–88.CrossRefGoogle Scholar
  6. 6.
    Huang, H. C. and Hinton, E., “A Nine-Node Lagrange Mindlin Plate Element with Enhanced Shear Interpolation”, Engineering Computations, 1 (1984) 369–379.CrossRefGoogle Scholar
  7. 7.
    Hughes, T. J. R. and Tezduyar, T. E., “Finite Elements Based Upon Mindlin Plate Theory with Particular Reference to the Four-Node Isoparametric Element”, J. Applied Mechanics, 48 (1981) 587–596.CrossRefzbMATHGoogle Scholar
  8. 8.
    MacNeal, R. H., “Derivation of Element Stiffness Matrices by Assumed Strain Distributions”, Nuclear Engineering and Design, 70 (1982) 3–12.CrossRefGoogle Scholar
  9. 9.
    Pian, T. H. H. and Sumihara, K., “Rational Approach for Assumed Stress Finite Elements”, Int. J. Numerical Methods in Engineering, 20 (1984) 1685–1695.CrossRefzbMATHGoogle Scholar
  10. 10.
    Saleeb, A. F., Chang, T. Y. and Graf, W., “A Quadrilateral Shell Element Using a Mixed Formulation”, Computers & Structures, Vol. 26 (1987) 787–803.CrossRefzbMATHGoogle Scholar
  11. 11.
    Simo, J. C. and Hughes, T. J. R., “On Variational Foundations of Assumed Strain Methods”, J. Applied Mechanics, 53 (1986) 51–54.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Simo, J. C. and Rifai, M.S., “A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes”, Int. J. Numerical Methods in Engineering, 29 (1990) 1595–1638.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Taylor, R. L., Beresford, R J. and Wilson, E. L., “A Non-Conforming Element for Stress Analysis”, Int. J. Numerical Methods in Engineering, 10 (1976) 1211–1220.CrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, X. J. and Belytschko, T., “A Study of Stabilization and Projection in the 4-Node Mindlin Plate Element”, Int. J. Numerical Methods in Engineering, 28 (1989) 2223–2238.CrossRefzbMATHGoogle Scholar
  15. 15.
    Wilson, E. L., Taylor, R. L. Doherty, W. P. and Ghaboussi, J., “Incompatible Displacement Models”, in: “Numerical and Computational Methods in Structural Mechanics” (S. T. Fenves et al., eds.), Academic Press, 1973, 43–57.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • U. Andelfinger
    • 1
  • E. Ramm
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations