Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 328))

Abstract

The study adresses the controversy ‘degenerated solid approach’ versus ‘shell theory’. It is shown that both formulations differ only in the kind of discretisation if they are based on the same mechanical assumptions. In particular for degenerated shell elements different versions of explicit integration across the thickness are discussed. Among these are the approximation ‘jacobian across the thickness is constant’ proven to be too restrictive and the series expansion of the inverse jacobian which turns out to be unnecessary although it leads to equations of the same order as those of a ‘best first approximation’ of a shell theory.

In order to make the differences and identities of the two approaches transparent a notation independent of a specific coordinate system has been utilized; thus transformation between global and local cartesian and curvilinear coordinates are avoided at this stage of the derivation. In addition, the discretization is not yet introduced at this step as it is usually done during the degeneration. For the sake of simplicity only a slight change of the shell thickness is allowed, i.e. the thickness is assumed to be constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S.; Irons, B.M.; Zienkiewicz, O.C.:Curved thick shell and membrane elements with particular reference to axi-symmetric problems. Proc. 2nd Conf. Matrix Methods in Structural Mechanics.Wright-Patterson A.F. Base, Ohio 1968.

    Google Scholar 

  2. Ahmad, S.; Irons, B.M.; Zienkiewicz, O.C.: Analysis of thick and thin shell structures by curved finite elements. Int. J. Num. Meth. Eng., 2 (1970) 419–451.

    Article  Google Scholar 

  3. Basar, Y.: Eine konsistente Theorie für Flächentragwerke endlicher Verformungen und deren Operatordarstellung auf variationstheoretischer Grundlage. ZAMM 66, 7 (1986) 297–308.

    Article  MATH  Google Scholar 

  4. Basar, Y.; Krätzig, W.B.: Mechanik der Flächentragwerke. Friedr. Vieweg & Sohn, Braunschweig 1985.

    Book  Google Scholar 

  5. Basar, Y.; Ding, Y.: Theory and finite element formulation for shell structures undergoing finite rotations. Advances in the theory of plates and shells (ed. Voyiadjis, G.Z. and Karamanlidis, D.) Amsterdam 1990.

    Google Scholar 

  6. Belytschko, T.; Wong, B. L.: Assumed strain stabilisation procedure for the 9-node Lagrange shell element. Int. J. Num. Meth. Eng., 28 (1989) 385–414.

    Article  MATH  Google Scholar 

  7. Büchter, N.: Ein nichtlineares degeneriertes Balkenelement (2-D) unter Verwendung von Biotspannungen. Mitteilung Nr. 8 des Instituts für Baustatik, Universität Stuttgart 1989.

    Google Scholar 

  8. Büchter, N.: Zusammenführung von Degenerationskonzept und Schalentheorie bei endlichen Rotationen. Dissertation. Bericht Nr. 14, Instituts für Baustatik, Universität Stuttgart, Stuttgart 1992.

    Google Scholar 

  9. Crisfield, M. A.: Explicit integration and the isoparametric arch and shell elements. Communications in applied numerical methods., 2 (1986) 181–187.

    Article  MATH  Google Scholar 

  10. Irons, B.M.: The semiloof shell element. Lecture notes. Int. Res. Seminar on Theory and Application of Finite Elements. Univ. of Calgary, Canada 1973.

    Google Scholar 

  11. Milford, R.V.; Schnobrich, W. C.: Degenerated isoparametric finite elements using explicit integration. Int. J. Num. Meth. Eng., 23, (1986) 133–154.

    Article  MathSciNet  MATH  Google Scholar 

  12. Parisch, H.: An investigation of a finite rotation four node shell element. Int. J. Num. Meth. Eng., 31 (1991) 127–150.

    Article  MATH  Google Scholar 

  13. Pietraszkiewicz, W.: Geometrically nonlinear theories of thin elastic shells. Advances in Mechanics, Vol. 12 No. 1 (1989).

    Google Scholar 

  14. Ramm, E.: Geometrisch nichtlineare Elastostatik und finite Elemente. Habilitation. Bericht Nr. 76–2, Institut für Baustatik, Universität Stuttgart 1976.

    Google Scholar 

  15. Ramm, E.: A plate/shell element for large deflections and rotations. US - Germany Symp. on “Formulations and computational algorithms in finite element analysis”, MIT 1976, MIT-Press (1977).

    Google Scholar 

  16. Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. ZAMP, 23 (1972).

    Google Scholar 

  17. Simo, J.C.; Fox, D. D.: On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Eng. 72 (1989) 267–304.

    Article  MathSciNet  MATH  Google Scholar 

  18. Simo, J.C.; Fox, D.D.; Rifai, M.S.: On a stress resultant geometrically exact shell model. Part II: The linear theory. Comp. Meth. Appl. Mech. Eng., 73 (1989) 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  19. Simo, J.C.; Fox, D.D.; Rifai, M.S.: On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Mech. Eng. 79 (1990) 21–70.

    Article  MathSciNet  MATH  Google Scholar 

  20. Simo, J.C.; Rifai, M.S.; Fox, D.D.: On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comp. Meth. Appl. Mech. Eng., 81 (1990) 53–91.

    MathSciNet  Google Scholar 

  21. Stander, N.; Matzenmiller, A.; Ramm, E.: An assessment of assumed strain methods in finite rotation shell analysis. Engineering Computations, 6 (1989) 57–66.

    Google Scholar 

  22. Stanley, G.M.: Continuum-based shell elements. PH. D. Thesis, Stanford Univ. 1985.

    Google Scholar 

  23. Stanley. G.M.; Park, K.C.; Hughes, T.J.R.: Continuum-based resultant shell elements. Finite element methods for plate and shell structures, ed. T.J.R. Hughes et. al., Pineridge Press, Swansea 1986, 1–45.

    Google Scholar 

  24. Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Num. Meth. Eng., 3 (1971) 275–290.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Büchter, N., Ramm, E. (1992). Comparison of Shell Theory and Degeneration. In: Rammerstorfer, F.G. (eds) Nonlinear Analysis of Shells by Finite Elements. International Centre for Mechanical Sciences, vol 328. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2604-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2604-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82416-0

  • Online ISBN: 978-3-7091-2604-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics