Comparison of Shell Theory and Degeneration

  • N. Büchter
  • E. Ramm
Part of the International Centre for Mechanical Sciences book series (CISM, volume 328)


The study adresses the controversy ‘degenerated solid approach’ versus ‘shell theory’. It is shown that both formulations differ only in the kind of discretisation if they are based on the same mechanical assumptions. In particular for degenerated shell elements different versions of explicit integration across the thickness are discussed. Among these are the approximation ‘jacobian across the thickness is constant’ proven to be too restrictive and the series expansion of the inverse jacobian which turns out to be unnecessary although it leads to equations of the same order as those of a ‘best first approximation’ of a shell theory.

In order to make the differences and identities of the two approaches transparent a notation independent of a specific coordinate system has been utilized; thus transformation between global and local cartesian and curvilinear coordinates are avoided at this stage of the derivation. In addition, the discretization is not yet introduced at this step as it is usually done during the degeneration. For the sake of simplicity only a slight change of the shell thickness is allowed, i.e. the thickness is assumed to be constant.


Shell Element Shell Theory Explicit Integration Transverse Shear Deformation Rigid Body Mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmad, S.; Irons, B.M.; Zienkiewicz, O.C.:Curved thick shell and membrane elements with particular reference to axi-symmetric problems. Proc. 2nd Conf. Matrix Methods in Structural Mechanics.Wright-Patterson A.F. Base, Ohio 1968.Google Scholar
  2. 2.
    Ahmad, S.; Irons, B.M.; Zienkiewicz, O.C.: Analysis of thick and thin shell structures by curved finite elements. Int. J. Num. Meth. Eng., 2 (1970) 419–451.CrossRefGoogle Scholar
  3. 3.
    Basar, Y.: Eine konsistente Theorie für Flächentragwerke endlicher Verformungen und deren Operatordarstellung auf variationstheoretischer Grundlage. ZAMM 66, 7 (1986) 297–308.CrossRefMATHGoogle Scholar
  4. 4.
    Basar, Y.; Krätzig, W.B.: Mechanik der Flächentragwerke. Friedr. Vieweg & Sohn, Braunschweig 1985.CrossRefGoogle Scholar
  5. 5.
    Basar, Y.; Ding, Y.: Theory and finite element formulation for shell structures undergoing finite rotations. Advances in the theory of plates and shells (ed. Voyiadjis, G.Z. and Karamanlidis, D.) Amsterdam 1990.Google Scholar
  6. 6.
    Belytschko, T.; Wong, B. L.: Assumed strain stabilisation procedure for the 9-node Lagrange shell element. Int. J. Num. Meth. Eng., 28 (1989) 385–414.CrossRefMATHGoogle Scholar
  7. 7.
    Büchter, N.: Ein nichtlineares degeneriertes Balkenelement (2-D) unter Verwendung von Biotspannungen. Mitteilung Nr. 8 des Instituts für Baustatik, Universität Stuttgart 1989.Google Scholar
  8. 8.
    Büchter, N.: Zusammenführung von Degenerationskonzept und Schalentheorie bei endlichen Rotationen. Dissertation. Bericht Nr. 14, Instituts für Baustatik, Universität Stuttgart, Stuttgart 1992.Google Scholar
  9. 9.
    Crisfield, M. A.: Explicit integration and the isoparametric arch and shell elements. Communications in applied numerical methods., 2 (1986) 181–187.CrossRefMATHGoogle Scholar
  10. 10.
    Irons, B.M.: The semiloof shell element. Lecture notes. Int. Res. Seminar on Theory and Application of Finite Elements. Univ. of Calgary, Canada 1973.Google Scholar
  11. 11.
    Milford, R.V.; Schnobrich, W. C.: Degenerated isoparametric finite elements using explicit integration. Int. J. Num. Meth. Eng., 23, (1986) 133–154.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Parisch, H.: An investigation of a finite rotation four node shell element. Int. J. Num. Meth. Eng., 31 (1991) 127–150.CrossRefMATHGoogle Scholar
  13. 13.
    Pietraszkiewicz, W.: Geometrically nonlinear theories of thin elastic shells. Advances in Mechanics, Vol. 12 No. 1 (1989).Google Scholar
  14. 14.
    Ramm, E.: Geometrisch nichtlineare Elastostatik und finite Elemente. Habilitation. Bericht Nr. 76–2, Institut für Baustatik, Universität Stuttgart 1976.Google Scholar
  15. 15.
    Ramm, E.: A plate/shell element for large deflections and rotations. US - Germany Symp. on “Formulations and computational algorithms in finite element analysis”, MIT 1976, MIT-Press (1977).Google Scholar
  16. 16.
    Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. ZAMP, 23 (1972).Google Scholar
  17. 17.
    Simo, J.C.; Fox, D. D.: On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Eng. 72 (1989) 267–304.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Simo, J.C.; Fox, D.D.; Rifai, M.S.: On a stress resultant geometrically exact shell model. Part II: The linear theory. Comp. Meth. Appl. Mech. Eng., 73 (1989) 53–62.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Simo, J.C.; Fox, D.D.; Rifai, M.S.: On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Mech. Eng. 79 (1990) 21–70.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Simo, J.C.; Rifai, M.S.; Fox, D.D.: On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comp. Meth. Appl. Mech. Eng., 81 (1990) 53–91.MathSciNetGoogle Scholar
  21. 21.
    Stander, N.; Matzenmiller, A.; Ramm, E.: An assessment of assumed strain methods in finite rotation shell analysis. Engineering Computations, 6 (1989) 57–66.Google Scholar
  22. 22.
    Stanley, G.M.: Continuum-based shell elements. PH. D. Thesis, Stanford Univ. 1985.Google Scholar
  23. 23.
    Stanley. G.M.; Park, K.C.; Hughes, T.J.R.: Continuum-based resultant shell elements. Finite element methods for plate and shell structures, ed. T.J.R. Hughes et. al., Pineridge Press, Swansea 1986, 1–45.Google Scholar
  24. 24.
    Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Num. Meth. Eng., 3 (1971) 275–290.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • N. Büchter
    • 1
  • E. Ramm
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations