Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 329))

Abstract

Many aspects of the thermally-driven circulation in the atmosphere or oceans can be studied on the laboratory scale via the cylindrical rotating annulus. In this paper, we review the basic geophysical motivation for such experiments, and discuss all the principal flow regimes so far studied. Particular emphasis is placed (a) on the underlying dynamics of the steady axisymmetric flow, (b) the structure and stability of the baroclinic wave regime, and (c) the possible transition scenarios to chaotic and/or irregular flow studied to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Read, P. L.: The ‘philosophy’ of laboratory experiments and studies of the atmospheric general circulation, Met. Mag., 117 (1988), 35–45.

    Google Scholar 

  2. Vetün, F.: Experimentale darstellung von luftbewegungen unter dem einflusse von temperatur-unterschieden und rotations-impulsen, Meteorol. Z., 1 (1884), 227–230 and 271–276.

    Google Scholar 

  3. Exner, F. M.: Über die bildung von Windhosen und Zyklonen, Sitzungsber der Akad. der Wiss. Wien, Abt. IIa, 132 (1923), 1–16.

    Google Scholar 

  4. Fultz, D.: Experimental analogies to atmospheric motions, in: Compendium of Meteorology (Ed. Malone, T. R.), American Meteorological Society 1951.

    Google Scholar 

  5. Hide, R.: An experimental study of thermal convection in a rotating fluid, Phil. Trans. R. Soc. Lond., A250 (1958), 441–478.

    Article  ADS  Google Scholar 

  6. Pippard, A. B.: Response and Stability, Cambridge University Press 1985.

    Google Scholar 

  7. Hide, R. & Mason, P. J.: Sloping convection in a rotating fluid, Adv. in Phys., 24 (1975), 47–100.

    Article  ADS  Google Scholar 

  8. White, A. A.: The dynamics of rotating fluids: numerical modelling of annulus flows, Met. Mag., 117 (1988), 54–63.

    Google Scholar 

  9. Hignett, P., Ibbetson, A. & Killworth, P. D.: On rotating thermal convection driven by non-uniform heating from below7, J. Fluid Meat., 109 (1981), 161–187.

    ADS  Google Scholar 

  10. Read, P. L.: Regimes of axisymmetric flow in an internally heated rotating fluid, J. Fluid Medi., 168 (1986), 255–289.

    Article  ADS  MATH  Google Scholar 

  11. Hignett, P.: A note on the heat transfer by the axisymmetric thermal convection in a rotating fluid annulus, Geophys. Astrophys. Fluid Dyn., 19 (1982), 293–299.

    Article  ADS  Google Scholar 

  12. Williams, G.P. (1969) ‘Numerical integration of the three-dimensional Navier-Stokes equations for incomressible flow’, J. Fluid Mech., 37 (1969), 727–750;

    Google Scholar 

  13. Williams, G. P. (1969) Baroclinic annulus waves, J. Fluid Mech., 49 (1971), 417–13.

    Article  ADS  Google Scholar 

  14. Bell, M. J. & White, A. A.: The stability of internal baroclinic jets: some analytical results, J. Atmos. Sci., 45 (1988), 2571–2590.

    Article  ADS  MathSciNet  Google Scholar 

  15. Drazin, P. G.: Variations on a theme of Eady, in: Rotating Fluids in Geophysics (ed. P. H. Roberts & A. M. Soward), Academic Press 1978, 139–169.

    Google Scholar 

  16. Hocking, L. M.: Theory of hydrodynamic stability, in: Rotating Fluids in Geophysics (ed. P. H. Roberts & A. M. Soward), Academic Press. 437–469.

    Google Scholar 

  17. Pedlosky, J.: Geophysical Fluid Dynamics (2nd Edition), Springer-Verlag 1987.

    Google Scholar 

  18. Pfeffer, R. L., Buzyna, G. & Kung, R.: Time dependent modes of behavior of thermally-driven rotating fluid, J. Atmos. Sci., 37 (1980), 2129–2149.

    Article  ADS  Google Scholar 

  19. Hignett, P., White, A. A., Carter, R. D., Jackson, W. D. N. & Small, R. M.: A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus, Quart. J. R. Met. Soc., 111 (1985), 131–154.

    Article  ADS  Google Scholar 

  20. Weng, H.-Y. & Barcilon, A.: Wave structure and evolution in baroclinic flow regimes, Quart. J. R. Met. Soc, 113 (1987), 1271–1294.

    Article  ADS  Google Scholar 

  21. Lindzen, R. S., Farrell, B. & Jacqmin, D.: Vacillation due to wave interference: applications to the atmosphere and to annulus experiments, J. Atmos. Sci, 39 (1982), 14–23.

    Article  ADS  Google Scholar 

  22. Lorenz, E. N.: The mechanics of vacillation, J. Atmos. Sci., 20 (1963), 448–464.

    Article  ADS  Google Scholar 

  23. Buzyna, G., Pfeffer, R. L. & Kung, R.: Transition to geostrophic turbulence in a rotating differentially heated annulus of fluid, J. Fluid Mech., 145 (1984), 377–403.

    Article  ADS  Google Scholar 

  24. Brindley, J. & Moroz, I. M.: Lorenz attractor behaviour in a continuously stratified baroclinic fluid, Phys. Lett., 77A (1980), 441–444;

    Article  MathSciNet  Google Scholar 

  25. Gibbon, J. D. & McGuiness, M. J.: A derivation of the Lorenz equations for some unstable dispersive physical systems, Phys. Lett., 77A (1980), 295–299;

    Article  MathSciNet  Google Scholar 

  26. Pedlosky, J. & Frenzen, C: Chaotic and periodic behavior of finite-amplitude baroclinic waves, J. Atmos. Sci., 37 (1980), 1177–1196.

    Article  ADS  MathSciNet  Google Scholar 

  27. Klein, P.: Transition to chaos in unstable baroclinic systems: a review, Fluid Dyn. Res., 5 (1990), 235–254.

    Article  ADS  Google Scholar 

  28. Hart, J. E.: A laboratory study of baroclinic chaos on the f-plane, Tellus, 37A (1985), 286–296.

    Article  Google Scholar 

  29. Read, P. L., Bell, M. J., Johnson, D. W. & Small, R. M.: Quasi-periodic and chaotic flow regimes in a thermally-driven, rotating fluid annulus, J. Fluid Mech., (1992 in press).

    Google Scholar 

  30. Read, P. L.: Dynamics and Instabilities of Ekman and Stewartson Layers, this volume 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Read, P.L. (1992). Rotating Annulus Flows and Baroclinic Waves. In: Hopfinger, E.J. (eds) Rotating Fluids in Geophysical and Industrial Applications. International Centre for Mechanical Sciences, vol 329. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2602-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2602-8_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82393-4

  • Online ISBN: 978-3-7091-2602-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics