Rotating Annulus Flows and Baroclinic Waves

  • P. L. Read
Part of the International Centre for Mechanical Sciences book series (CISM, volume 329)


Many aspects of the thermally-driven circulation in the atmosphere or oceans can be studied on the laboratory scale via the cylindrical rotating annulus. In this paper, we review the basic geophysical motivation for such experiments, and discuss all the principal flow regimes so far studied. Particular emphasis is placed (a) on the underlying dynamics of the steady axisymmetric flow, (b) the structure and stability of the baroclinic wave regime, and (c) the possible transition scenarios to chaotic and/or irregular flow studied to date.


Zonal Flow Ekman Layer Baroclinic Instability Axisymmetric Flow Taylor Number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Read, P. L.: The ‘philosophy’ of laboratory experiments and studies of the atmospheric general circulation, Met. Mag., 117 (1988), 35–45.Google Scholar
  2. 2.
    Vetün, F.: Experimentale darstellung von luftbewegungen unter dem einflusse von temperatur-unterschieden und rotations-impulsen, Meteorol. Z., 1 (1884), 227–230 and 271–276.Google Scholar
  3. 3.
    Exner, F. M.: Über die bildung von Windhosen und Zyklonen, Sitzungsber der Akad. der Wiss. Wien, Abt. IIa, 132 (1923), 1–16.Google Scholar
  4. 4.
    Fultz, D.: Experimental analogies to atmospheric motions, in: Compendium of Meteorology (Ed. Malone, T. R.), American Meteorological Society 1951.Google Scholar
  5. 5.
    Hide, R.: An experimental study of thermal convection in a rotating fluid, Phil. Trans. R. Soc. Lond., A250 (1958), 441–478.ADSCrossRefGoogle Scholar
  6. 6.
    Pippard, A. B.: Response and Stability, Cambridge University Press 1985.Google Scholar
  7. 7.
    Hide, R. & Mason, P. J.: Sloping convection in a rotating fluid, Adv. in Phys., 24 (1975), 47–100.ADSCrossRefGoogle Scholar
  8. 8.
    White, A. A.: The dynamics of rotating fluids: numerical modelling of annulus flows, Met. Mag., 117 (1988), 54–63.Google Scholar
  9. 9.
    Hignett, P., Ibbetson, A. & Killworth, P. D.: On rotating thermal convection driven by non-uniform heating from below7, J. Fluid Meat., 109 (1981), 161–187.ADSGoogle Scholar
  10. 10.
    Read, P. L.: Regimes of axisymmetric flow in an internally heated rotating fluid, J. Fluid Medi., 168 (1986), 255–289.ADSCrossRefMATHGoogle Scholar
  11. 11.
    Hignett, P.: A note on the heat transfer by the axisymmetric thermal convection in a rotating fluid annulus, Geophys. Astrophys. Fluid Dyn., 19 (1982), 293–299.ADSCrossRefGoogle Scholar
  12. 12.
    Williams, G.P. (1969) ‘Numerical integration of the three-dimensional Navier-Stokes equations for incomressible flow’, J. Fluid Mech., 37 (1969), 727–750;Google Scholar
  13. 12a.
    Williams, G. P. (1969) Baroclinic annulus waves, J. Fluid Mech., 49 (1971), 417–13.ADSCrossRefGoogle Scholar
  14. 13.
    Bell, M. J. & White, A. A.: The stability of internal baroclinic jets: some analytical results, J. Atmos. Sci., 45 (1988), 2571–2590.ADSCrossRefMathSciNetGoogle Scholar
  15. 14.
    Drazin, P. G.: Variations on a theme of Eady, in: Rotating Fluids in Geophysics (ed. P. H. Roberts & A. M. Soward), Academic Press 1978, 139–169.Google Scholar
  16. 15.
    Hocking, L. M.: Theory of hydrodynamic stability, in: Rotating Fluids in Geophysics (ed. P. H. Roberts & A. M. Soward), Academic Press. 437–469.Google Scholar
  17. 16.
    Pedlosky, J.: Geophysical Fluid Dynamics (2nd Edition), Springer-Verlag 1987.Google Scholar
  18. 17.
    Pfeffer, R. L., Buzyna, G. & Kung, R.: Time dependent modes of behavior of thermally-driven rotating fluid, J. Atmos. Sci., 37 (1980), 2129–2149.ADSCrossRefGoogle Scholar
  19. 18.
    Hignett, P., White, A. A., Carter, R. D., Jackson, W. D. N. & Small, R. M.: A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus, Quart. J. R. Met. Soc., 111 (1985), 131–154.ADSCrossRefGoogle Scholar
  20. 19.
    Weng, H.-Y. & Barcilon, A.: Wave structure and evolution in baroclinic flow regimes, Quart. J. R. Met. Soc, 113 (1987), 1271–1294.ADSCrossRefGoogle Scholar
  21. 20.
    Lindzen, R. S., Farrell, B. & Jacqmin, D.: Vacillation due to wave interference: applications to the atmosphere and to annulus experiments, J. Atmos. Sci, 39 (1982), 14–23.ADSCrossRefGoogle Scholar
  22. 21.
    Lorenz, E. N.: The mechanics of vacillation, J. Atmos. Sci., 20 (1963), 448–464.ADSCrossRefGoogle Scholar
  23. 22.
    Buzyna, G., Pfeffer, R. L. & Kung, R.: Transition to geostrophic turbulence in a rotating differentially heated annulus of fluid, J. Fluid Mech., 145 (1984), 377–403.ADSCrossRefGoogle Scholar
  24. 23.
    Brindley, J. & Moroz, I. M.: Lorenz attractor behaviour in a continuously stratified baroclinic fluid, Phys. Lett., 77A (1980), 441–444;CrossRefMathSciNetGoogle Scholar
  25. 23a.
    Gibbon, J. D. & McGuiness, M. J.: A derivation of the Lorenz equations for some unstable dispersive physical systems, Phys. Lett., 77A (1980), 295–299;CrossRefMathSciNetGoogle Scholar
  26. 23b.
    Pedlosky, J. & Frenzen, C: Chaotic and periodic behavior of finite-amplitude baroclinic waves, J. Atmos. Sci., 37 (1980), 1177–1196.ADSCrossRefMathSciNetGoogle Scholar
  27. 24.
    Klein, P.: Transition to chaos in unstable baroclinic systems: a review, Fluid Dyn. Res., 5 (1990), 235–254.ADSCrossRefGoogle Scholar
  28. 25.
    Hart, J. E.: A laboratory study of baroclinic chaos on the f-plane, Tellus, 37A (1985), 286–296.CrossRefGoogle Scholar
  29. 26.
    Read, P. L., Bell, M. J., Johnson, D. W. & Small, R. M.: Quasi-periodic and chaotic flow regimes in a thermally-driven, rotating fluid annulus, J. Fluid Mech., (1992 in press).Google Scholar
  30. 27.
    Read, P. L.: Dynamics and Instabilities of Ekman and Stewartson Layers, this volume 1992.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • P. L. Read
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations