Advertisement

Dynamics and Instabilities of Ekman and Stewartson Layers

  • P. L. Read
Part of the International Centre for Mechanical Sciences book series (CISM, volume 329)

Abstract

We review the basic dynamical properties and structures of the steady, laminar forms of the two principal rotationally-dominated boundary layers encountered in a homogeneous rotating fluid; the Ekman and Stewartson layers. The modifying influence of density stratification (due to thermal contrasts) is considered, and the main modes of instability exhibited by these boundary layers in the laboratory and in nature are discussed with regard to both observations and theory.

Keywords

Boundary Layer Shear Layer Ekman Layer Ekman Transport Coriolis Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hopfinger, E. J.: General concepts and examples of rotating fluids, this volume, 1992.Google Scholar
  2. 2.
    Ekman, V. W.: On the influence of the earth’s rotation on ocean currents, Ark. Math. Astr. Fys., 2 (1905), 1–52.Google Scholar
  3. 3.
    Walker, J. M.: Farthest north, dead water and the Ekman spiral. Part 1: An audacious adventure, Weather, 46 (1991), 103–107;ADSCrossRefGoogle Scholar
  4. 3a.
    Walker, J. M.: Farthest north, dead water and the Ekman spiral. Part 2: Invisible waves and a new direction in current theory, Weather, 46 (1991), 158–164.ADSCrossRefGoogle Scholar
  5. 4.
    Stewartson, K.: On almost rigid rotations, J. Fluid Mech., 3 (1957), 17–26.ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 5.
    Caldwell, D. R. & Van Atta, C. W.: Characteristics of Ekman boundary layer instabilities, J. Fluid Mech., 44 (1970), 79–95.ADSCrossRefGoogle Scholar
  7. 6.
    Pedlosky, J.: Geophysical Fluid Dynamics, Springer-Verlag 1987, ppvii+624.Google Scholar
  8. 7.
    Moore, D. W.: Homogenous fluids in rotation A:viscous effects, in: Rotating Fluids in Geophysics (ed. P. H. Roberts & A. Soward), Academic Press 1978, 29–66.Google Scholar
  9. 8.
    Fein, J. S. (ed.): Boundary Layers in Homogenous and Stratified-Rotating Fluids, University Presses of Florida 1978, ppxiii+128.Google Scholar
  10. 9.
    Greenspan, H. P.: The Theory of Rotating Fluids, Cambridge University Press 1968, ppxi + 327.MATHGoogle Scholar
  11. 10.
    Friedlander, S.: An Introduction to the Mathematical Theory of Geophysical Fluid Dynamics, North-Holland 1980, ppviii+272.MATHGoogle Scholar
  12. 11.
    Howroyd, G. C. & Slawson, P. R.: The characteristics of a laboratory produced turbulent Ekman layer’, Boundary Layer Met., 8 (1975), 201–219.ADSCrossRefGoogle Scholar
  13. 12.
    Caldwell, D. R., van Atta, C. W. & Heiland, K. N.: A laboratory study of the turbulent Ekman layer, Geophys. Fluid Dyn., 3 (1972), 125–160.ADSGoogle Scholar
  14. 13.
    Hide, R.: The viscous boundary layer at the free surface of a rotating baroclinic fluid, Tellus, 16 (1964), 523–529.ADSCrossRefGoogle Scholar
  15. 14.
    Hide, R.: Experiments with rotating fluids, Quart. J. R. Met. Soc, 103 (1977), 1–28.ADSCrossRefGoogle Scholar
  16. 15.
    Faller, A. J. & Kaylor, R. (1967) ’Instability of the Ekman spiral with applications to the Planetary Boundary Layers’, Phys. Fluids Suppl. (1967), S212–219.Google Scholar
  17. 16.
    Lindzen, R. S.: Instability of plane parallel shear flow (toward a mechanistic picture of how it works), PAGEOPH, 126 (1988), 103–121.CrossRefGoogle Scholar
  18. 17.
    Bayly, B. J., Orszag, S. A. & Herbert, T.: Instability mechanisms in shear flow transition, Ann. Rev. Fluid Mech., 20 (1988), 359–391.ADSCrossRefGoogle Scholar
  19. 18.
    Brown, R. A.: Longitudinal instabilities and secondary flows in the Planetary Boundary Layer: A review, Rev. Geophys. Space Phys., 18 (1980), 683–697.ADSCrossRefGoogle Scholar
  20. 19.
    Müller, D., Etling, D., Kottmeier, Ch. & Roth, R.: On the occurrence of cloud streets over northern Germany, Quart. J. R. Met. Soc, 111 (1985), 761–772.ADSCrossRefGoogle Scholar
  21. 20.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Instability, Clarendon Press, Oxford 1961.Google Scholar
  22. 21.
    Hide, R. & Titman, C. W.: Detached shear layers in a rotating fluid, J. Fluid Mech., 29 (1967), 39–60.ADSCrossRefGoogle Scholar
  23. 22.
    Niino, H. & Misawa, N.: An experimental and theoretical study of barotropic instability, J. Atmos. Sci., 41 (1984), 1992–2011.ADSCrossRefGoogle Scholar
  24. 23.
    Lilly, D.K. : J. Atmos. Sci., 23 (1966), 481–494.ADSCrossRefGoogle Scholar
  25. 24.
    Tatro, P. R. & Mollo-Christensen, E.L. : J. Fluid Mech., 28 (1967), 531–544.ADSCrossRefGoogle Scholar
  26. 25.
    Faller, A. J.: Instability and transition of disturbed flow over a rotating disk, J. Fluid Mech., 230 (1991), 245–269.ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • P. L. Read
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations