Advertisement

Baroclinic Turbulence

  • E. J. Hopfinger
Part of the International Centre for Mechanical Sciences book series (CISM, volume 329)

Abstract

Baroclinic turbulence is stratified geostrophic turbulence where rotation and stratification are of equal order. A measure of the relative importance is the internal radius of deformation A, which compares (stable) density stratification effects with respect to rotation. In a two-layer fluid, when A → 0, the problem reduces to a one layer barotropic turbulence and when A → ∞, the two layers are uncoupled. In the intermediate case a vertical shear is allowed and the tilting of the planetary vorticity f∂u/∂z is compensated by -(g/ρo) × ∇p [1]. The perturbation pressure is essentially hydrostatic ∂p/∂z ≈-g ρ′.

Keywords

Froude Number Potential Vorticity Spectral Slope Stratify Fluid Baroclinic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rhines, P.: Geostrophic turbulence, Ann. Rev, Fluid Mech., 11 (1979), 401.ADSCrossRefGoogle Scholar
  2. 2.
    Hua, L.B. & Haidvogel, D.B.: Numerical simulation of the vertical structure of quasi geostrophic turbulence, J. Atmosph. Sci., 43 (1986), 2923.ADSCrossRefGoogle Scholar
  3. 3.
    Brachet, M.-E., Meneguzzi, M. and Sulem, P.-L: Small scale dynamics of high Reynolds number two-dimensional turbulence, Phys. Rev. Lett., 57 (1986), 683.ADSCrossRefGoogle Scholar
  4. 4.
    Griffiths, R.W. and Hopfinger, E.J.: The structure of mesoscale turbulence and horizontal spreading at ocean fronts, Deep sea Res., 31 (1984), 245.ADSCrossRefGoogle Scholar
  5. 5.
    Rhines, P.: Waves and turbulence on a beta- plane, J Fluid Mec., 69 (1975), 417.ADSCrossRefMATHGoogle Scholar
  6. 6.
    Griffiths, R.W. and Linden, P.: The stability of vortices in rotating stratified fluid, J. Huid Mech. 195 (1981), 283.ADSGoogle Scholar
  7. 7.
    Colin de Verdière, A.: Quasi-geostrophic turbulence in a rotating homogeneous fluid, Geophys. astrophys. Fluid Dyn., 15 (1980), 213.CrossRefGoogle Scholar
  8. 8.
    Hopfinger, E.J., Griffiths, R.W. and Mory, M.: The structure of turbulence in homogeneous and stratified rotating fluids. J. Méc. Théor. Appl., numéro spéc. 9 (1983), 21.Google Scholar
  9. 9.
    Morel, P. and Larchevèque, M.: Relative dispersion of constant level balloons in the 200 mb general ciculation, J. Atmosph. Sci., 31 (1974), 2189.ADSCrossRefGoogle Scholar
  10. 10.
    Narimousa, S., Maxworthy, T. and Spedding, G. R.: Experiments on the structure and dynamics of forced, quasi-two-dimensional turbulence. J. Huid Mech. 223 (1991), 113.ADSGoogle Scholar
  11. 11.
    Capéran, P.: Turbulence soumise à des forces extérieures. Thèse d’état, Universite J.F. Grenoble, 1989.Google Scholar
  12. 12.
    Babiano, A., Basdevant, C. and Sadourny, R.: Structure functions and dispersion laws in two-dimensional turbulence, J. Atmos. Sci., 42 (1985), 941.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • E. J. Hopfinger
    • 1
  1. 1.University J.F. and CNRSGrenoble CedexFrance

Personalised recommendations