Rotation Effects on Turbulence

Part of the International Centre for Mechanical Sciences book series (CISM, volume 329)


We consider the general case of a turbulent flow in a rotating coordinate system. Rotation is known to produce anisotropy in a turbulent flow, revealed by an increase of the turbulent lengthscales in the direction parallel to the rotation axis as compared to those in a plane perpendicular to it. This mechanism, which relies on the dimensional analysis presented earlier in this volume by Hopfinger [1], leads to the evolution of turbulence towards a two-dimensional state. Before this process is described in section 2 of the present paper, the effect of rotation on second order correlations (Reynolds stresses tensor) is considered in section 1.


Rotation Axis Turbulent Kinetic Energy Reynolds Equation Isotropic Turbulence Large Aspect Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopfinger E.J.: Parameters, Scales, Geostrophic balance, this volume.Google Scholar
  2. 2.
    Maxworthy T.: Convecüve and Shear flow turbulence with rotation, this volume.Google Scholar
  3. 3.
    Hopfinger E.J.: Baroclinic turbulence, this volume.Google Scholar
  4. 4.
    Tennekes H. & Lumley J.L.: A first course in turbulence, MIT Press, 1972.Google Scholar
  5. 5.
    Mory M.: Inertial waves, this volume,Google Scholar
  6. 6.
    Bardina J., Ferziger J.H. & Rogallo R.S.: Effect of rotation on isotropic turbulence: computation and modelling, J. Fluid Mech., 154 (1985), 321–336.ADSCrossRefGoogle Scholar
  7. 7.
    Itsweire E., Chabert L. & Gence J.N.: Action d’une rotation pure sur une turbulence homogène anisotrope, C.R.A.S., 289 B (1979), 197–199.ADSGoogle Scholar
  8. 8.
    Roy Ph.: Simulation numérique d’un champ turbulent homogène incompressible soumis à des gradients de vitesse moyenne, Thèse d’état, Université de Nice, 1986.Google Scholar
  9. 9.
    Cambon C. & Jacquin L.: Spectral approach to non-isotropie turbulence subjected to rotation, J. Fluid Mech., 202 (1989), 295–317.ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Lesieur M.: Turbulence in Fluids, Kluwer Academic Publishers, 1990.CrossRefMATHGoogle Scholar
  11. 11.
    Frish U. & Sulem P.L.: Numerical simulation of the inverse cascade in twodimensional turbulence, Phys. Fluids, 27 (1984), 1921–1923.ADSCrossRefGoogle Scholar
  12. 12.
    Ibbetson A. & Tritton D.J.: Experiments on turbulence in a rotating fluid, J. Fluid Mech., 68 (1975), 639–672.ADSCrossRefGoogle Scholar
  13. 13.
    Colin de Verdière A.: Quasi-geostrophic turbulence in a rotating homogeneous fluid, Geophys. Astrophys. Fluid Dyn., 15 (1980), 213–251.ADSCrossRefMATHGoogle Scholar
  14. 14.
    Hopfinger E.J. , Browand F.K. & Gagne Y.: Turbulence and waves in a rotating tank, J. Huid Mech., 125 (1982), 505–534.ADSGoogle Scholar
  15. 15.
    Wigeland R.A. & Nagib H.M.: Grid generated turbulence with and without rotation about the streamwise direction, IIT Fluids & Heat Transfer Rep. R. 78–1, Illinois Institute of Technology, 1977.Google Scholar
  16. 16.
    Jacquin L., Leuchter O., Cambon C. & Mathieu J.: Homogeneous turbulence in the presence of rotation, J. Fluid Mech., 220 (1990), 1–52.ADSCrossRefMATHGoogle Scholar
  17. 17.
    Maxworthy T., Hopfinger E.J. & Redekopp L.G.: Wave motions on vortex cores, J. Fluid Mech., 151 (1985), 141–165.ADSCrossRefGoogle Scholar
  18. 18.
    Veronis G.: The analogy between rotating and stratified fluids, Ann. Rev. Fluid Mech., 2 (1970), 37–66.ADSCrossRefGoogle Scholar
  19. 19.
    Mory M. & Capéran Ph.: On the genesis of quasi-steady vortices in a rotating turbulent flow, J. Huid Mech., 185 (1987), 121–136.ADSMATHGoogle Scholar
  20. 20.
    Hopfinger E.J. , Griffiths R.W. & Mory M.: The structure of turbulence in homogeneous and stratified rotating fluids, J. Mécanique Théorique and Appliquée, Vol. Spécial (1983), 21–44.Google Scholar
  21. 21.
    Fleury M., Mory M., Hopfinger E.J. & Auchère D.: Effects of rotation on turbulent mixing across a density interface, J. Fluid Mech., 223 (1991), 165–191.ADSCrossRefGoogle Scholar
  22. 22.
    Bertoglio J.P.: Homogeneous Turbulent Field within a Rotating Frame, AIAA J., 20(1982), 1175–1181.ADSCrossRefMATHGoogle Scholar
  23. 23.
    Aupoix B., Cousteix J. & Liandrat J.: Effects of rotation on isotropic turbulence, Turbulent Shear Flows, Karlsruhe, 1983.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • M. Mory
    • 1
  1. 1.University J.F. and CNRSGrenoble CedexFrance

Personalised recommendations