Vortex Flow Generated by a Rotating Disc

  • M. Mory
  • A. Spohn
Part of the International Centre for Mechanical Sciences book series (CISM, volume 329)


Rows produced by a rotating disc are of considerable interest in many practical applications. In computers, for instance, the flow near the rotating hard disc influences heat convection and therefore the temperature of adjacent electronic components. Centrifugal separators, centrifugal pumps, disc viscometers and methods for the production of crystals used in computer memories are other examples that reveal the importance of rotating disc flows in industrial devices. The idealised configuration of a rotating disc of infinite radius is considered first. The exact solution of the Navier-Stokes equations obtained by von Karman [1] is used for the boundary layer to obtain some physical insight into the flow structure produced by rotating discs. In the second part, the discussion is enlarged to confined flow geometries.


Boundary Layer Free Surface Centrifugal Pump Fixed Plate Rotaring Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Von Karman T.: Über laminare and turbulente Reibung, ZAMM, 1 (1921), 233–252.ADSCrossRefMATHGoogle Scholar
  2. 2.
    Cochran W.G.: The flow due to a rotating disk, Proc. Cambridge Philos. Soc., 30 (1934),365–375.ADSCrossRefMATHGoogle Scholar
  3. 3.
    Schlichting H.: Boundary layer theory, McGraw Hill, 1968.Google Scholar
  4. 4.
    Bödewadt U.T.: Die Drehströmung über festem Grunde, ZAMM, 20 (1940), 241 – 253.CrossRefGoogle Scholar
  5. 5.
    Batchelor G.K.: Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow, Q. J. Mech. Appl. Math., 4 (1951), 29–41.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Grohne D.: Über die laminare Strömung in einer kreiszylindrischen Dose mit rotierendem Deckel, Nachr. Akad. Wiss. Göttingen Math.-Phys. Klasse, 12 (1955), 263–282.Google Scholar
  7. 7.
    Zandbergen P.J. and Dijkstra D.: Von Karman swirling flows, Ann. Rev. Fluid Mech., 19 (1987), 465–491.ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Spohn A.: Ecoulement et éclatement tourbillonnaires engendrés par un disque tournant dans une enceinte cylindrique, Thèse Université J. Fourier, Grenoble, 1991.Google Scholar
  9. 9.
    Tomlan P.F. & Hudson J.L.: Flow near an enclosed rotating disc: analysis, Chemical Engineering Science, 26 (1971), 1591–1600.CrossRefGoogle Scholar
  10. 10.
    Neitzel G.P.: Streakline motion during steady and unsteady axisymmetric vortex breakdown, Phys. Fluids, 31 (1988), 958–960.ADSCrossRefGoogle Scholar
  11. 11.
    Lugt H.J. & Abboud M.: Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid, J. Fluid Mech., 179 (1987), 179–200.ADSCrossRefMATHGoogle Scholar
  12. 12.
    Lopez J.M.: Axisymmetric vortex breakdown. Part 1: confined swirling flow, J. Fluid Mech., 221 (1990), 533–552.ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Daube O. & Sorensen J.N.: Simulation numérique de l’écoulement périodique dans une cavité cylindrique, C.R.A.S., 308 (1989), série II, 463–469.Google Scholar
  14. 14.
    Vogel H.U.: Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe, MPI Bericht 6,1968.Google Scholar
  15. 15.
    Escudier M.P.: Observations of the flow produced in a cylindrical container by a rotating endwall, Exp. Fluids, 2 (1984), 189–196.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • M. Mory
    • 1
  • A. Spohn
    • 1
  1. 1.University J.F. and CNRSGrenoble CedexFrance

Personalised recommendations