Advertisement

Long-Lived Eddies in the Atmospheres of the Major Planets

  • P. L. Read
Part of the International Centre for Mechanical Sciences book series (CISM, volume 329)

Abstract

We review current knowledge of the giant, long-lived eddies observed in the atmospheres of the Major Planets. Particular emphasis is placed on determining the dynamical processes which may be at work, and we discuss a range of both theoretical and laboratory models which have been suggested as analogues of these features.

Keywords

Potential Vorticity Zonal Flow Anticyclonic Eddy Baroclinic Instability Baroclinic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stephenson, D. J.: Interiors of the giant planets, Ann. Rev. Earth Plan. Sci, 10 (1982), 257–295.ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gierasch, P. J. & Conrath, B. J.: Vertical temperature gradients on Uranus: implications for layered convection, J. Geophys. Res., 92 (1987), 15019–15029.ADSCrossRefGoogle Scholar
  3. 3.
    Conrath, B. J. & Gierasch, P.: Global variation of the para hydrogen fraction in Jupiter’s atmosphere and implications for dynamics on the outer planets, Icarus, 57 (1984), 184–204.ADSCrossRefGoogle Scholar
  4. 4.
    Read, P. L.: Stable, baroclinic eddies on Jupiter and Saturn: a laboratory analog and some observational tests, Icarus, 65 (1986), 304–334.*ADSCrossRefGoogle Scholar
  5. 5.
    Achterberg, R. K. & Ingersoll, A. P.: A normal-mode approach to Jovian atmospheric dynamics, J. Atmos. Sci., 46 (1989), 2448–2462.ADSCrossRefGoogle Scholar
  6. 6.
    Ingersoll, A. P.: Atmospheric dynamics of the Outer Planets, Science, 248 (1990), 308–315.*ADSCrossRefGoogle Scholar
  7. 7.
    Polvani, L. M., Wisdom, J., DeJong, E. & Ingersoll, A. P.: Simple models of Neptune’s Great Dark Spot, Science, 249 (1990), 1393–1398.ADSCrossRefGoogle Scholar
  8. 8.
    Hide, R.: Origin of Jupiter’s Great red Spot, Nature, 190 (1961), 895–896.ADSCrossRefGoogle Scholar
  9. 9.
    Ingersoll, A. P.: Jupiter’s Great Red Spot: a free atmospheric vortex?, Science, 312 (1973), 1346–1348.ADSCrossRefGoogle Scholar
  10. 10.
    Ingersoll, A. P. & Cuong,: Numerical model of long-lived Jovian vortices, J. Atmos. Sci, 38 (1981), 2067–2076.ADSCrossRefGoogle Scholar
  11. 11.
    Marcus, P. S.: Numerical simulation of Jupiter’s Great Red Spot, Nature, 331 (1988), 693–696.ADSCrossRefGoogle Scholar
  12. 12.
    Sommeria, J., Myers, S. D. & Swinney, H. L.: Laboratory simulation of Jupiter’s Great Red Spot, Nature, 331 (1988), 689–693;ADSCrossRefGoogle Scholar
  13. Meyers, S. D., Sommeria, J. & Swinney, H. L.: Laboratory study of the dynamics of Jovian-type vortices, Physica, 37D (1989), 515–530.Google Scholar
  14. 13.
    Niino, H. & Misawa, N.: An experimental and theoretical study of barotropic instability, J. Atmos. Sci.., 41 (1984), 1992–2011.ADSCrossRefGoogle Scholar
  15. 14.
    Read, P. L.: Dynamics and instabilities of Ekman and Stewarston boundary layers, in: this volume (1992).Google Scholar
  16. 15.
    Williams, G. P. & Yamagata, T., Geostrophic regimes, intermediate solitary vortices and Jovian eddies, J., Atmos. Sci., 41 (1984), 453–478;ADSCrossRefGoogle Scholar
  17. Williams, G. P. & Wilson, R. J., The stability and genesis of Rossby vortices, J. Atmos. Sci., 45 (1988), 207–241.ADSCrossRefGoogle Scholar
  18. 16.
    Antipov et al. 1981–85 — for review see Nezlin, M. V.: Rossby solitons (experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type), Sov. Phys. Usp., 29 (1986), 807–842.Google Scholar
  19. 17.
    Dowling, T. E. & Ingersoll, A. P.: Potential vorticity and layer thickness variations in the flow around Jupiter’s Great Red Spot and White Oval BC, J. Atmos. Sci., 45 (1988), 1380–1396;ADSCrossRefGoogle Scholar
  20. 17a.
    Dowling, T. E. & Ingersoll, A. P.: Jupiter’s Great Red Spot as a shallow water system, J. Atmos. Sci., 46 (1989), 3256–3278.ADSCrossRefGoogle Scholar
  21. 18.
    Read, P. L.:Soliton theory and Jupiter’s Great Red Spot, Nature, 326 (1987), 337–338.ADSCrossRefGoogle Scholar
  22. 19.
    Williams, G. P.: Planetary circulations: 2. The Jovian quasi-geostrophic regime, J. Atmos. Scl, 36 (1979), 932–968; Ultra-long baroclinic waves and Jupiter’s Great Red Spot, J. Met. Soc. Japan, 57 (1979), 196–198.Google Scholar
  23. 20.
    Read, P. L. & Hide, R.: Long-lived eddies in the laboratory and in the atmospheres of Jupiter and Saturn, Nature, 302 (1983), 126–129;ADSCrossRefGoogle Scholar
  24. 20a.
    Read, P. L. & Hide, R.: An isolated baroclinic eddy as a laboratory analogue of the Great Red Spot on Jupiter?, Nature, 308 (1984), 45–49.ADSCrossRefGoogle Scholar
  25. 21.
    Read, P. L.: Rotating annulus flows and baroclinic waves, in: this volume (1992).Google Scholar
  26. 22.
    Read, P. L.: Coherent baroclinic waves in a rotating, stably-stratified fluid and transitions to disordered flow, in: Proceedings of IMA Conference “Waves & Turbulence in Stably-Stratified Flows” (ed. King, J. C. & Mobbs, S. D.). Oxford University Press 1991. (in press).Google Scholar
  27. 23.
    Lewis, S. R.: Long-lived eddies in the atmosphere of Jupiter, D. Phil. Thesis, University of Oxford 1988.Google Scholar
  28. 24.
    Kuiper G. P.: Lunar and Planetary Laboratory studies of Jupiter — II., Sky & Telescope, 43 (1972), 75–81.ADSGoogle Scholar
  29. 25.
    Maxworthy, T. & Redekopp, L. G.: A solitary wave theory of the Great Red Spot and other observed features in the Jovian atmosphere, Icarus, 29 (1976), 261–271.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • P. L. Read
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations