Advertisement

Dynamics of Vortex Filaments

  • D. W. Moore
Part of the International Centre for Mechanical Sciences book series (CISM, volume 329)

Abstract

In the flow generated by a solid body started from rest, fluid particles have zero vorticity initially. If the fluid is homogeneous, only those fluid particles which are at some stage of their history close to the body acquire vorticity by diffusion from the boundary. Were it not for the occurence of flow separation, the flow away from the boundary of the body would remain irrotational.

Keywords

Vortex Ring Fluid Particle Vortex Line Vorticity Field Vortex Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Küchemann, D. (1978) The Aerodynamic Design of Aircraft. Pergamon Press.Google Scholar
  2. 2.
    Pullin, D.I. and Perry, A.E. (1980) JFM 97, 239.ADSCrossRefGoogle Scholar
  3. 3.
    Moore, D.W. and Saffman, P.G. (1973) Proc. Roy. Soc. A 333, 491.ADSCrossRefMATHGoogle Scholar
  4. 4.
    Dhanak, M. R. and de Bernardnis, B. (1981) JFM 109, 189.ADSCrossRefMATHGoogle Scholar
  5. 5.
    Birkhoff, G. and Fisher, J. (1959) Rend Circ. Mat. Palermo, Sec. 2, 8, 77.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Rott, N. (1956) JFM 1, 111.ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Crow, S.C. (1970) AIAAJ 8, 2172.ADSCrossRefGoogle Scholar
  8. 8.
    Kelvin, Lord (1880) Phil. Mag. 10, 155.CrossRefGoogle Scholar
  9. 9.
    Widnall, S. E. and Tsai, C-Y. (1977) Phil. Trans. Roy. Soc. 287, 273.ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jeffreys, H. and Jeffreys, B. (1972) Methods of Mathematical Physics. Cambridge University Press.MATHGoogle Scholar
  11. 11.
    Van der Vooren, A.I. (1980) Proc. Roy. Soc. A373, 67.ADSCrossRefGoogle Scholar
  12. 12.
    Moore, D.W. (1981) SIAM J. Sci. Stat. Comp. 2, 65.MATHGoogle Scholar
  13. 13.
    Ince, E.L. (1926) Ordinary Differential Equations. Dover Publications.Google Scholar
  14. 14.
    Whitham, G. B. (1963) in Laminar Boundary Layers ed. Rosenhead, L. Oxford University Press.Google Scholar
  15. 15.
    Leonard, A. (1985) Ann. Rev. Fluid Mech. 17.523ADSCrossRefGoogle Scholar
  16. 16.
    Saffman, P.G. (1970) Stud. Appl. Math. 49, 371.MATHGoogle Scholar
  17. 17.
    Widnall, S.E., Bliss, D. and Zalay, A. (1971) in Aircraft Wake Turbulence And Its Detection. Plenum Press.Google Scholar
  18. 18.
    Moore, D.W. and Saffman, P.G. (1972) Phil. Trans. Roy. Soc. A 272, 38.CrossRefGoogle Scholar
  19. 19.
    Fukumoto, Y. and Miyazuki, T. (1991) JFM 222, 369.ADSCrossRefMATHGoogle Scholar
  20. 20.
    Arms, R.J. and Hama, J.L. (1965) Phys. Fluid. 8, 553.ADSCrossRefGoogle Scholar
  21. 21.
    Has imoto, H. (1972) JFM 51, 577.Google Scholar
  22. 22.
    Kida, S. (1981 JFM 112, 397.ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Lamb, H. (1928) Statics. Cambridge University Press.Google Scholar
  24. 24.
    Maxworthy, T., Hopfinger, E.J. and Redekopp, K. G. JFM 151, 141.Google Scholar
  25. 25.
    Deem, G. S. and Zabusky, N.J. (1978) Phys. Rev. Lett. 40, 859.ADSCrossRefGoogle Scholar
  26. 26.
    Lamb, H. 1931) Hydrodynamics. Cambridge University Press.Google Scholar
  27. 27.
    Norbury, J. (1973) JFM 57, 417.ADSCrossRefMATHGoogle Scholar
  28. 28.
    Moore, D.W. and Saffman, P.G. (1972) in Aircraft Wake Turbulence And Its Detection, ed. Olsen, J.H. and Goldberg, A. Plenum Press.Google Scholar
  29. 29.
    Kida, S. (1981). J. Phys. Soc. Japan 50, 3517.ADSCrossRefGoogle Scholar
  30. 30.
    Milne-Thomason, L. M. (1971) Theoretical Hydrodynamics. Macmillan.Google Scholar
  31. 31.
    Watson, G.N. (1941) Theory of Bessel Functions. Cambridge University Press.Google Scholar
  32. 32.
    Moore, D.W. (1972) Aeronautical Quarterly, 23, 307.Google Scholar
  33. 33.
    Bisgood, P.L. , Maltby, R. L. and Dee, F. W. (1972) in Aircraft Wake Turbulence and its Detection. ed. Olsen, J.H. and Goldberg, A. Plenum Press.Google Scholar
  34. 34.
    Widnall, S. E. , Bliss, D. and Tsai, C-Y (1974) JFM 66, 35.ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Moore, D.W. and Saffman, P.G. (1975) Proc. Roy. Soc. A 346, 413.ADSCrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Saffman, P.G. (1978) JFM 84, 625.ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • D. W. Moore
    • 1
  1. 1.Imperial CollegeLondonUK

Personalised recommendations