Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 329))

  • 254 Accesses

Abstract

In the flow generated by a solid body started from rest, fluid particles have zero vorticity initially. If the fluid is homogeneous, only those fluid particles which are at some stage of their history close to the body acquire vorticity by diffusion from the boundary. Were it not for the occurence of flow separation, the flow away from the boundary of the body would remain irrotational.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Küchemann, D. (1978) The Aerodynamic Design of Aircraft. Pergamon Press.

    Google Scholar 

  2. Pullin, D.I. and Perry, A.E. (1980) JFM 97, 239.

    Article  ADS  Google Scholar 

  3. Moore, D.W. and Saffman, P.G. (1973) Proc. Roy. Soc. A 333, 491.

    Article  ADS  MATH  Google Scholar 

  4. Dhanak, M. R. and de Bernardnis, B. (1981) JFM 109, 189.

    Article  ADS  MATH  Google Scholar 

  5. Birkhoff, G. and Fisher, J. (1959) Rend Circ. Mat. Palermo, Sec. 2, 8, 77.

    Article  MathSciNet  Google Scholar 

  6. Rott, N. (1956) JFM 1, 111.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Crow, S.C. (1970) AIAAJ 8, 2172.

    Article  ADS  Google Scholar 

  8. Kelvin, Lord (1880) Phil. Mag. 10, 155.

    Article  Google Scholar 

  9. Widnall, S. E. and Tsai, C-Y. (1977) Phil. Trans. Roy. Soc. 287, 273.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Jeffreys, H. and Jeffreys, B. (1972) Methods of Mathematical Physics. Cambridge University Press.

    MATH  Google Scholar 

  11. Van der Vooren, A.I. (1980) Proc. Roy. Soc. A373, 67.

    Article  ADS  Google Scholar 

  12. Moore, D.W. (1981) SIAM J. Sci. Stat. Comp. 2, 65.

    MATH  Google Scholar 

  13. Ince, E.L. (1926) Ordinary Differential Equations. Dover Publications.

    Google Scholar 

  14. Whitham, G. B. (1963) in Laminar Boundary Layers ed. Rosenhead, L. Oxford University Press.

    Google Scholar 

  15. Leonard, A. (1985) Ann. Rev. Fluid Mech. 17.523

    Article  ADS  Google Scholar 

  16. Saffman, P.G. (1970) Stud. Appl. Math. 49, 371.

    MATH  Google Scholar 

  17. Widnall, S.E., Bliss, D. and Zalay, A. (1971) in Aircraft Wake Turbulence And Its Detection. Plenum Press.

    Google Scholar 

  18. Moore, D.W. and Saffman, P.G. (1972) Phil. Trans. Roy. Soc. A 272, 38.

    Article  Google Scholar 

  19. Fukumoto, Y. and Miyazuki, T. (1991) JFM 222, 369.

    Article  ADS  MATH  Google Scholar 

  20. Arms, R.J. and Hama, J.L. (1965) Phys. Fluid. 8, 553.

    Article  ADS  Google Scholar 

  21. Has imoto, H. (1972) JFM 51, 577.

    Google Scholar 

  22. Kida, S. (1981 JFM 112, 397.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Lamb, H. (1928) Statics. Cambridge University Press.

    Google Scholar 

  24. Maxworthy, T., Hopfinger, E.J. and Redekopp, K. G. JFM 151, 141.

    Google Scholar 

  25. Deem, G. S. and Zabusky, N.J. (1978) Phys. Rev. Lett. 40, 859.

    Article  ADS  Google Scholar 

  26. Lamb, H. 1931) Hydrodynamics. Cambridge University Press.

    Google Scholar 

  27. Norbury, J. (1973) JFM 57, 417.

    Article  ADS  MATH  Google Scholar 

  28. Moore, D.W. and Saffman, P.G. (1972) in Aircraft Wake Turbulence And Its Detection, ed. Olsen, J.H. and Goldberg, A. Plenum Press.

    Google Scholar 

  29. Kida, S. (1981). J. Phys. Soc. Japan 50, 3517.

    Article  ADS  Google Scholar 

  30. Milne-Thomason, L. M. (1971) Theoretical Hydrodynamics. Macmillan.

    Google Scholar 

  31. Watson, G.N. (1941) Theory of Bessel Functions. Cambridge University Press.

    Google Scholar 

  32. Moore, D.W. (1972) Aeronautical Quarterly, 23, 307.

    Google Scholar 

  33. Bisgood, P.L. , Maltby, R. L. and Dee, F. W. (1972) in Aircraft Wake Turbulence and its Detection. ed. Olsen, J.H. and Goldberg, A. Plenum Press.

    Google Scholar 

  34. Widnall, S. E. , Bliss, D. and Tsai, C-Y (1974) JFM 66, 35.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Moore, D.W. and Saffman, P.G. (1975) Proc. Roy. Soc. A 346, 413.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Saffman, P.G. (1978) JFM 84, 625.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Moore, D.W. (1992). Dynamics of Vortex Filaments. In: Hopfinger, E.J. (eds) Rotating Fluids in Geophysical and Industrial Applications. International Centre for Mechanical Sciences, vol 329. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2602-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2602-8_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82393-4

  • Online ISBN: 978-3-7091-2602-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics