Constitutive Equations for Granular Materials in Geomechanical Context

  • Wolfgang Ehlers
Part of the International Centre for Mechanical Sciences book series (CISM, volume 337)


This lecture outlines the possibilities of porous media theories in describing granular materials in geomechanical context as, for example, saturated or unsaturated soils or granular rocks, etc. In the present investigations, porous media theories are referred to as classical mixture theories extended by the concept of volume fractions. This approach, assuming statistically distributed and superimposed continua with internal interactions, implies the diverse field functions of both the porous solid matrix and the respective pore contents to be represented by average functions of the macroscale.


Constitutive Equation Granular Material Hybrid Model Entropy Inequality Intermediate Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktin, R.J. and Craine, R.E.: Continuum theories of mixtures: Basic theory and historical development, Q. J. Mech. Appl. Math., 29 (1976), 209–244.CrossRefGoogle Scholar
  2. Aktin, R.J. and Craine, R.E.: Continuum theories of mixtures: Applications, J. Inst. Maths. Applies., 17 (1976), 153–207.CrossRefGoogle Scholar
  3. Bachmat, Y. and Bear, J.: Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach, Transport in Porous Media, 1 (1986), 213–240.CrossRefGoogle Scholar
  4. Baer M.R. and Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase flow, 12 (1986), 861–889.CrossRefMATHGoogle Scholar
  5. Bedford, A. and Drumheller, D.S.: Theories of immiscible and structured mixtures, Int. J. Engng. Sci., 21 (1983), 863–960.MathSciNetCrossRefMATHGoogle Scholar
  6. de Boer, R.: On plastic deformation of soils, Int. J. Plasticity, 4 (1988), 371–391.CrossRefMATHGoogle Scholar
  7. de Boer, R. and Dresenkamp, H.-T.: Contitutive equations for concrete in failure state, ASCE: J. Engrg. Mech., 115 (1989), 1591–1608.CrossRefGoogle Scholar
  8. de Boer, R. and Ehlers, W.: On the problem of fluid-and gas-filled elasto-plastic solids, Int. J. Solids Structures, 22 (1986a), 1231–1242.CrossRefMATHGoogle Scholar
  9. de Boer, R. and Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Teil I, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 40, Universität Essen 1986b.Google Scholar
  10. de Boer, R. and Ehlers, W.: A historical review of the formulation of porous media theories, Acta Mech., 74 (1988), 1–8.CrossRefGoogle Scholar
  11. de Boer, R. and Ehlers, W.: Uplift, friction and capillarity — three fundamental effects for liquid-saturated porous solids, Int. J. Solids Structures, 26 (1990a), 43–57.CrossRefGoogle Scholar
  12. de Boer, R. and Ehlers, W.: The development of the concept of effective stresses, Acta Mech., 83 (1990b), 77–94.MathSciNetCrossRefMATHGoogle Scholar
  13. de Boer, R., Ehlers, W., Kowalski, S. and Plischka, J.: Porous media — a survey of different approaches, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 54, Universität Essen 1991.Google Scholar
  14. de Boer, R. and Kowalski, S.J.: A plasticity theory for fluid-saturated porous solids, Int. J. Engng. Sci., 21 (1983), 1343–1357.CrossRefMATHGoogle Scholar
  15. de Boer, R. and Lade, P.V.: Towards a general plasticity theory for empty and saturated porous solids, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 55, Universität Essen 1991.Google Scholar
  16. Bowen, R.M.: Theory of mixtures, in Eringen, C. (ed.), Continuum Physics, Vol. III, Academic Press, New York 1976, pp. 1–127.Google Scholar
  17. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci., 18 (1980), 1129–1148.CrossRefMATHGoogle Scholar
  18. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci., 20 (1982), 697–735.CrossRefMATHGoogle Scholar
  19. Bowen, R.M.: Diffusion models implied by the theory of mixtures, in Truesdell, C. (ed.), Rational Thermodynamics, 2nd Edn., Springer-Verlag, New York 1984, pp. 237–263.CrossRefGoogle Scholar
  20. Chaboche, J.L.: Sur les lois de comportement des matériaux sous sollicitations monotones ou cycliques, Rech. Aérosp., no. 1983–5 (1983), 363–375.Google Scholar
  21. Cross, J.J.: Mixtures of fluids and isotropic solids, Arch. Mech., 25 (1973), 1025–1039.MathSciNetMATHGoogle Scholar
  22. Deasi, C.S.: Single surface yield and potential function plasticity models: A review, Computers and Geotechnics, 7 (1989), 319–335.CrossRefGoogle Scholar
  23. Desai, C.S.: Modelling and testing: Implementation of numerical models and their application in practice, in Desai, C.S. and Gioda, G. (eds.), Numerical Methods and Constitutive Modelling in Geomechanics, Springer-Verlag, Wien 1990, pp. 1–168.Google Scholar
  24. Desai, C.S. and Salami, M.R.: Constitutive model for rocks, ASCE: J. Geotech. Engr. Div., 113 (1987), 407–423.CrossRefGoogle Scholar
  25. Dresenkamp, H.-T.: Stoffgleichungen für spröde und granulare Stoffe im Bruchzustand, Dissertation ( Dr.-Ing. ), Universität Essen 1987.Google Scholar
  26. Drucker, D.C. and Prager, W.: Soil mechanics and plastic analysis of limit design, Quart. Appl. Math., 10 (1952), 157–165.MathSciNetMATHGoogle Scholar
  27. Drumheller, D.S.: The theoretical treatment of a porous solid using a mixture theory, Int. J. Solids Structures, 14 (1978), 441–456.CrossRefMATHGoogle Scholar
  28. Ehlers, W.: On thermodynamics of elasto-plastic porous media, Arch. Mech., 41 (1989), 73–93.MathSciNetMATHGoogle Scholar
  29. Ehlers, W.: Poröse Medien — ein kontinuumsmechanisches Modell auf Basis der Mischungstheorie, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 47, Universität Essen 1989.Google Scholar
  30. Ehlers, W.: A general approach to porous media elasto-plasticity, in Khan, A.S. and Tokuda, M. (eds.), Advances in Plasticity, Proceedings of Plasticity 89, Pergamon Press, Oxford 1989, pp. 19–22.Google Scholar
  31. Ehlers, W.: Finite elasto-plasticity for liquid-saturated porous solids, in Fan, J. and Murakami, S. (eds.), Advances in Contitutive Laws for Engineering Materials, Proceedings of ICCLEM (Asia), International Academic Publishers, Beijing 1989, pp. 439–444.Google Scholar
  32. Ehlers, W.: Toward finite theories of liquid-saturated elasto-plastic porous media, Int. J. Plasticity, 7 (1991), 443–475.Google Scholar
  33. Ehlers, W.: An elastoplasticity model in porous media theories, Transport in Porous Media, 9 (1992), 49–59.CrossRefGoogle Scholar
  34. Ehlers, W.: A new single surface plasticity model for brittle and granular solid materials, in preparation.Google Scholar
  35. Flory, P.J.: Thermodynamic relations for high elastic materials, Trans. Faraday Soc., 57 (1961), 829–838.MathSciNetCrossRefGoogle Scholar
  36. Green, A.E. and Naghdi, P.M.: A general theory of an elastic-plastic continuum, Arch. Rational Mech. Anal., 18 (1965), 251–281; 19 (1965), 408.MathSciNetGoogle Scholar
  37. Green, R.J.: A plasticity theory for porous solids, Int. J. Mech. Sci., 14 (1972), 215–224.CrossRefMATHGoogle Scholar
  38. Hassanizadeh, M. and Gray, W.G.: General conservation equations for multi-phase systems: 1. Averaging procedure, Adv. Water Res., 2 (1979), 131–144.Google Scholar
  39. Hassanizadeh, M. and Gray, W.G.: General conservation equations for multi-phase systems: 2. Mass, momenta, energy and entropy equations, Adv. Water Res., 2 (1979), 191–203.Google Scholar
  40. Haupt, P.: On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behavior, Int. J. Plasticity, 1 (1985), 303–316.MathSciNetCrossRefMATHGoogle Scholar
  41. Haupt, P. and Tsakmakis, Ch.: On the application of dual variables in continuum mechanics, Continuum Mech. Thermodyn., 1 (1989), 165–196.MathSciNetMATHGoogle Scholar
  42. Hutter, K.: The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics, Acta Mech., 27 (1977), 1–54.MathSciNetCrossRefADSGoogle Scholar
  43. Kelly, P.D.: A reacting continuum, Int. J. Engng. Sci., 2 (1964), 129–153.CrossRefMATHGoogle Scholar
  44. Kim, M.K. and Lade, P.V.: Single hardening constitutive model for frictional materials, I. Plastic potential function, Computers and Geotechnics, 5 (1988), 307–324.CrossRefGoogle Scholar
  45. Kojic, M. and Cheatham, J.B.: Theory of plasticity of porous media with fluid flow, Soc. Petr. Eng. J., 14 (1974), 263–270.Google Scholar
  46. Kojic, M. and Cheatham, J.B.: Analysis of the influence of fluid flow on the plasticity of porous rock under an axially symmetric punch, Soc. Petr. Eng. J., 14 (1974), 271–278.Google Scholar
  47. Lade, P.V. and Duncan, J.M.: Cubical triaxial tests on cohesionless soil, ASCE: J. Soil Mech. Found. Div., 99 (1973), 793–812.Google Scholar
  48. Lade, P.V.: Three-dimensional stress-strain behavior and modeling of soils, Schriftenreihe des Instituts für Grundbau, Wasserwesen und Verkehrswesen, Serie Grundbau, Heft 4, Ruhr-Universität Bochum 1979.Google Scholar
  49. Macvean, D.B.: Die Elementararbeit in einem Kontinuum und Zuordnung von Spannungsund Verzerrungstensoren, ZAMP, 19 (1968), 157–185.CrossRefMATHADSGoogle Scholar
  50. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen, ZAMM, 8 (1928), 161–185.CrossRefMATHGoogle Scholar
  51. Morland, L.W.: A simple contitutive theory for a fluid-saturated porous solid, J. Geophys. Res., 77 (1972), 890–900.CrossRefADSGoogle Scholar
  52. Müller, I.: A thermodynamic theory of mixtures of fluids, Arch. Rational Mech. Anal., 28 (1968), 1–39.MATHGoogle Scholar
  53. Nigmatulin, R.I.: Spatial averaging in the mechanics of heterogeneous and dispersed systems, Int. J. Multiphase Flow, 5 (1979), 353–385.CrossRefMATHGoogle Scholar
  54. Paulun, J.: Plastische Inkompressibilität bei großen Formänderungen, Acta Mech., 37 (1980), 43–51.CrossRefMATHGoogle Scholar
  55. Phillips, A.: The foundations of thermoplasticity — experiments and theory, in Zeman, J. L. and Ziegler, F. (eds.), Topics in Applied Continuum Mechanics, Springer-Verlag, Wien 1974, pp. 1–21.CrossRefGoogle Scholar
  56. Phillips, A. and Eisenberg, M.: Observations on certain inequality conditions in plasticity, Int. J. Non-linear Mech., 1 (1966), 247–255.CrossRefGoogle Scholar
  57. Prévost, J.A.: Consolidation of anelastic porous media, ASCE: J. Engrg. Mech., 107 (1981), 169–186.Google Scholar
  58. Rivlin, R.S.: Large elastic deformation of isotropic materials, I. Fundamental concepts, Phil. Trans. Roy. Soc. Lond. A, 240 (1948), 459–490.MathSciNetCrossRefMATHADSGoogle Scholar
  59. Schad, H.: Nichtlineare Stoffgleichungen für Böden und ihre Verwendung bei der numerischen Analyse von Grundbauaufgaben, Mitteilung des Baugrundinstituts Stuttgart, Heft 10, Universität Stuttgart 1979.Google Scholar
  60. Simo, J.C. and Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: Computational implications, Comput. Meths. Appl. Mech. Engrg., 46 (1984), 201–215.CrossRefMATHADSGoogle Scholar
  61. Thamm, B.: Anfangssetzungen und Anfangsporenwasserüberdrücke eines normalverdichteten wassergesättigten Tones, Mitteilungen des Baugrundinstituts Stuttgart, Heft 1, Universität Stuttgart 1974.Google Scholar
  62. Wang, C.-C.: Inhomogeneities in second-grade fluid bodies and isotropic solid bodies, Arch. Mech., 25 (1973), 765–780.MATHGoogle Scholar
  63. Wang, C.-C. and Truesdell, C.: Introduction to Rational Elasticity, Noordhoff International Publishing, Leyden 1973.MATHGoogle Scholar
  64. Yamada, Y. and Ishihara, K.: Anisotropic deformation characteristics of sand under three-dimensional stress conditions, JSSMFE: Soil and Foundations, 19 (1979), 79–94.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • Wolfgang Ehlers
    • 1
  1. 1.Institut für MechanikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations