Skip to main content

Constitutive Equations for Granular Materials in Geomechanical Context

  • Chapter
Continuum Mechanics in Environmental Sciences and Geophysics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 337))

Abstract

This lecture outlines the possibilities of porous media theories in describing granular materials in geomechanical context as, for example, saturated or unsaturated soils or granular rocks, etc. In the present investigations, porous media theories are referred to as classical mixture theories extended by the concept of volume fractions. This approach, assuming statistically distributed and superimposed continua with internal interactions, implies the diverse field functions of both the porous solid matrix and the respective pore contents to be represented by average functions of the macroscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktin, R.J. and Craine, R.E.: Continuum theories of mixtures: Basic theory and historical development, Q. J. Mech. Appl. Math., 29 (1976), 209–244.

    Article  Google Scholar 

  • Aktin, R.J. and Craine, R.E.: Continuum theories of mixtures: Applications, J. Inst. Maths. Applies., 17 (1976), 153–207.

    Article  Google Scholar 

  • Bachmat, Y. and Bear, J.: Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach, Transport in Porous Media, 1 (1986), 213–240.

    Article  Google Scholar 

  • Baer M.R. and Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase flow, 12 (1986), 861–889.

    Article  MATH  Google Scholar 

  • Bedford, A. and Drumheller, D.S.: Theories of immiscible and structured mixtures, Int. J. Engng. Sci., 21 (1983), 863–960.

    Article  MathSciNet  MATH  Google Scholar 

  • de Boer, R.: On plastic deformation of soils, Int. J. Plasticity, 4 (1988), 371–391.

    Article  MATH  Google Scholar 

  • de Boer, R. and Dresenkamp, H.-T.: Contitutive equations for concrete in failure state, ASCE: J. Engrg. Mech., 115 (1989), 1591–1608.

    Article  Google Scholar 

  • de Boer, R. and Ehlers, W.: On the problem of fluid-and gas-filled elasto-plastic solids, Int. J. Solids Structures, 22 (1986a), 1231–1242.

    Article  MATH  Google Scholar 

  • de Boer, R. and Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Teil I, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 40, Universität Essen 1986b.

    Google Scholar 

  • de Boer, R. and Ehlers, W.: A historical review of the formulation of porous media theories, Acta Mech., 74 (1988), 1–8.

    Article  Google Scholar 

  • de Boer, R. and Ehlers, W.: Uplift, friction and capillarity — three fundamental effects for liquid-saturated porous solids, Int. J. Solids Structures, 26 (1990a), 43–57.

    Article  Google Scholar 

  • de Boer, R. and Ehlers, W.: The development of the concept of effective stresses, Acta Mech., 83 (1990b), 77–94.

    Article  MathSciNet  MATH  Google Scholar 

  • de Boer, R., Ehlers, W., Kowalski, S. and Plischka, J.: Porous media — a survey of different approaches, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 54, Universität Essen 1991.

    Google Scholar 

  • de Boer, R. and Kowalski, S.J.: A plasticity theory for fluid-saturated porous solids, Int. J. Engng. Sci., 21 (1983), 1343–1357.

    Article  MATH  Google Scholar 

  • de Boer, R. and Lade, P.V.: Towards a general plasticity theory for empty and saturated porous solids, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 55, Universität Essen 1991.

    Google Scholar 

  • Bowen, R.M.: Theory of mixtures, in Eringen, C. (ed.), Continuum Physics, Vol. III, Academic Press, New York 1976, pp. 1–127.

    Google Scholar 

  • Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci., 18 (1980), 1129–1148.

    Article  MATH  Google Scholar 

  • Bowen, R.M.: Compressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci., 20 (1982), 697–735.

    Article  MATH  Google Scholar 

  • Bowen, R.M.: Diffusion models implied by the theory of mixtures, in Truesdell, C. (ed.), Rational Thermodynamics, 2nd Edn., Springer-Verlag, New York 1984, pp. 237–263.

    Chapter  Google Scholar 

  • Chaboche, J.L.: Sur les lois de comportement des matériaux sous sollicitations monotones ou cycliques, Rech. Aérosp., no. 1983–5 (1983), 363–375.

    Google Scholar 

  • Cross, J.J.: Mixtures of fluids and isotropic solids, Arch. Mech., 25 (1973), 1025–1039.

    MathSciNet  MATH  Google Scholar 

  • Deasi, C.S.: Single surface yield and potential function plasticity models: A review, Computers and Geotechnics, 7 (1989), 319–335.

    Article  Google Scholar 

  • Desai, C.S.: Modelling and testing: Implementation of numerical models and their application in practice, in Desai, C.S. and Gioda, G. (eds.), Numerical Methods and Constitutive Modelling in Geomechanics, Springer-Verlag, Wien 1990, pp. 1–168.

    Google Scholar 

  • Desai, C.S. and Salami, M.R.: Constitutive model for rocks, ASCE: J. Geotech. Engr. Div., 113 (1987), 407–423.

    Article  Google Scholar 

  • Dresenkamp, H.-T.: Stoffgleichungen für spröde und granulare Stoffe im Bruchzustand, Dissertation ( Dr.-Ing. ), Universität Essen 1987.

    Google Scholar 

  • Drucker, D.C. and Prager, W.: Soil mechanics and plastic analysis of limit design, Quart. Appl. Math., 10 (1952), 157–165.

    MathSciNet  MATH  Google Scholar 

  • Drumheller, D.S.: The theoretical treatment of a porous solid using a mixture theory, Int. J. Solids Structures, 14 (1978), 441–456.

    Article  MATH  Google Scholar 

  • Ehlers, W.: On thermodynamics of elasto-plastic porous media, Arch. Mech., 41 (1989), 73–93.

    MathSciNet  MATH  Google Scholar 

  • Ehlers, W.: Poröse Medien — ein kontinuumsmechanisches Modell auf Basis der Mischungstheorie, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, 47, Universität Essen 1989.

    Google Scholar 

  • Ehlers, W.: A general approach to porous media elasto-plasticity, in Khan, A.S. and Tokuda, M. (eds.), Advances in Plasticity, Proceedings of Plasticity 89, Pergamon Press, Oxford 1989, pp. 19–22.

    Google Scholar 

  • Ehlers, W.: Finite elasto-plasticity for liquid-saturated porous solids, in Fan, J. and Murakami, S. (eds.), Advances in Contitutive Laws for Engineering Materials, Proceedings of ICCLEM (Asia), International Academic Publishers, Beijing 1989, pp. 439–444.

    Google Scholar 

  • Ehlers, W.: Toward finite theories of liquid-saturated elasto-plastic porous media, Int. J. Plasticity, 7 (1991), 443–475.

    Google Scholar 

  • Ehlers, W.: An elastoplasticity model in porous media theories, Transport in Porous Media, 9 (1992), 49–59.

    Article  Google Scholar 

  • Ehlers, W.: A new single surface plasticity model for brittle and granular solid materials, in preparation.

    Google Scholar 

  • Flory, P.J.: Thermodynamic relations for high elastic materials, Trans. Faraday Soc., 57 (1961), 829–838.

    Article  MathSciNet  Google Scholar 

  • Green, A.E. and Naghdi, P.M.: A general theory of an elastic-plastic continuum, Arch. Rational Mech. Anal., 18 (1965), 251–281; 19 (1965), 408.

    MathSciNet  Google Scholar 

  • Green, R.J.: A plasticity theory for porous solids, Int. J. Mech. Sci., 14 (1972), 215–224.

    Article  MATH  Google Scholar 

  • Hassanizadeh, M. and Gray, W.G.: General conservation equations for multi-phase systems: 1. Averaging procedure, Adv. Water Res., 2 (1979), 131–144.

    Google Scholar 

  • Hassanizadeh, M. and Gray, W.G.: General conservation equations for multi-phase systems: 2. Mass, momenta, energy and entropy equations, Adv. Water Res., 2 (1979), 191–203.

    Google Scholar 

  • Haupt, P.: On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behavior, Int. J. Plasticity, 1 (1985), 303–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Haupt, P. and Tsakmakis, Ch.: On the application of dual variables in continuum mechanics, Continuum Mech. Thermodyn., 1 (1989), 165–196.

    MathSciNet  MATH  Google Scholar 

  • Hutter, K.: The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics, Acta Mech., 27 (1977), 1–54.

    Article  MathSciNet  ADS  Google Scholar 

  • Kelly, P.D.: A reacting continuum, Int. J. Engng. Sci., 2 (1964), 129–153.

    Article  MATH  Google Scholar 

  • Kim, M.K. and Lade, P.V.: Single hardening constitutive model for frictional materials, I. Plastic potential function, Computers and Geotechnics, 5 (1988), 307–324.

    Article  Google Scholar 

  • Kojic, M. and Cheatham, J.B.: Theory of plasticity of porous media with fluid flow, Soc. Petr. Eng. J., 14 (1974), 263–270.

    Google Scholar 

  • Kojic, M. and Cheatham, J.B.: Analysis of the influence of fluid flow on the plasticity of porous rock under an axially symmetric punch, Soc. Petr. Eng. J., 14 (1974), 271–278.

    Google Scholar 

  • Lade, P.V. and Duncan, J.M.: Cubical triaxial tests on cohesionless soil, ASCE: J. Soil Mech. Found. Div., 99 (1973), 793–812.

    Google Scholar 

  • Lade, P.V.: Three-dimensional stress-strain behavior and modeling of soils, Schriftenreihe des Instituts für Grundbau, Wasserwesen und Verkehrswesen, Serie Grundbau, Heft 4, Ruhr-Universität Bochum 1979.

    Google Scholar 

  • Macvean, D.B.: Die Elementararbeit in einem Kontinuum und Zuordnung von Spannungsund Verzerrungstensoren, ZAMP, 19 (1968), 157–185.

    Article  MATH  ADS  Google Scholar 

  • von Mises, R.: Mechanik der plastischen Formänderung von Kristallen, ZAMM, 8 (1928), 161–185.

    Article  MATH  Google Scholar 

  • Morland, L.W.: A simple contitutive theory for a fluid-saturated porous solid, J. Geophys. Res., 77 (1972), 890–900.

    Article  ADS  Google Scholar 

  • Müller, I.: A thermodynamic theory of mixtures of fluids, Arch. Rational Mech. Anal., 28 (1968), 1–39.

    MATH  Google Scholar 

  • Nigmatulin, R.I.: Spatial averaging in the mechanics of heterogeneous and dispersed systems, Int. J. Multiphase Flow, 5 (1979), 353–385.

    Article  MATH  Google Scholar 

  • Paulun, J.: Plastische Inkompressibilität bei großen Formänderungen, Acta Mech., 37 (1980), 43–51.

    Article  MATH  Google Scholar 

  • Phillips, A.: The foundations of thermoplasticity — experiments and theory, in Zeman, J. L. and Ziegler, F. (eds.), Topics in Applied Continuum Mechanics, Springer-Verlag, Wien 1974, pp. 1–21.

    Chapter  Google Scholar 

  • Phillips, A. and Eisenberg, M.: Observations on certain inequality conditions in plasticity, Int. J. Non-linear Mech., 1 (1966), 247–255.

    Article  Google Scholar 

  • Prévost, J.A.: Consolidation of anelastic porous media, ASCE: J. Engrg. Mech., 107 (1981), 169–186.

    Google Scholar 

  • Rivlin, R.S.: Large elastic deformation of isotropic materials, I. Fundamental concepts, Phil. Trans. Roy. Soc. Lond. A, 240 (1948), 459–490.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Schad, H.: Nichtlineare Stoffgleichungen für Böden und ihre Verwendung bei der numerischen Analyse von Grundbauaufgaben, Mitteilung des Baugrundinstituts Stuttgart, Heft 10, Universität Stuttgart 1979.

    Google Scholar 

  • Simo, J.C. and Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: Computational implications, Comput. Meths. Appl. Mech. Engrg., 46 (1984), 201–215.

    Article  MATH  ADS  Google Scholar 

  • Thamm, B.: Anfangssetzungen und Anfangsporenwasserüberdrücke eines normalverdichteten wassergesättigten Tones, Mitteilungen des Baugrundinstituts Stuttgart, Heft 1, Universität Stuttgart 1974.

    Google Scholar 

  • Wang, C.-C.: Inhomogeneities in second-grade fluid bodies and isotropic solid bodies, Arch. Mech., 25 (1973), 765–780.

    MATH  Google Scholar 

  • Wang, C.-C. and Truesdell, C.: Introduction to Rational Elasticity, Noordhoff International Publishing, Leyden 1973.

    MATH  Google Scholar 

  • Yamada, Y. and Ishihara, K.: Anisotropic deformation characteristics of sand under three-dimensional stress conditions, JSSMFE: Soil and Foundations, 19 (1979), 79–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Ehlers, W. (1993). Constitutive Equations for Granular Materials in Geomechanical Context. In: Hutter, K. (eds) Continuum Mechanics in Environmental Sciences and Geophysics. International Centre for Mechanical Sciences, vol 337. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2600-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2600-4_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82449-8

  • Online ISBN: 978-3-7091-2600-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics