Waves and Oscillations in the Ocean and in Lakes

  • Kolumban Hutter
Part of the International Centre for Mechanical Sciences book series (CISM, volume 337)


We study linear wave motions in lakes and ocean bays whose characteristic length scales extend over most parts or all of the water masses. We present the governing equations and motivate, by means of a scale analysis, the various simplified versions of model equations that are in use in linearized lake dynamics. This scale analysis permits rational deduction of the reduced equations — the most important of these are the shallow water equations — and delimits their applicability.


Gravity Wave Internal Wave RossBY Wave Nodal Line Baroclinic Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous. 1983. Hydrologische Messungen mit verankerten Instrumenten im Nordbecken des Luganersees während der Monate Juli/August 1979. Gemeinschaftsarbeit des Laboratorio di Fisica Terrestre, Icts Lugano-Trevano, sowie der Gruppe “ Physikalische Linologie” der Vaw-Eth Zürich, Interner Bericht I/68, 328 pp.Google Scholar
  2. Abramowitz, M. and Stegun, I.A. 1972. Handbook of mathematical functions. Dover. Ball, F.K. 1965. Second class motions of a shallow liquid. J. Fluid Mech., 23, 545–561.ADSGoogle Scholar
  3. Bauerle, E. 1981. Die Eigenschwingungen abgeschlossener, zwei-geschichteter Wasserbecken bei variabler Bodentopographie. Dissertation an der Christian Alberts Universität, Kiel.Google Scholar
  4. Bauerle, E. 1985. Internal free oscillations in the Lake of Geneva. Annales Geophysicae, 3, 199–206.Google Scholar
  5. Birchfield, G.E. and Hiclie, B.P. 1977. The time dependent response of a circular basin of variable depth to a wind stress. J. Phys. Oceanogr., 7, 691–701.CrossRefADSGoogle Scholar
  6. Bloomfield, P. 1976. Fourier analysis of time series: An introduction. John Wiley, New York.MATHGoogle Scholar
  7. Brown, P.J. 1973. Kelvin wave reflection in semi-infinite canal. J. Mar. Res., 31, 1–10.Google Scholar
  8. Buchwald, V.T. and Adams, J.K. 1968. The propagation of continental shelf waves. Proc. Roy. Soc., A305, 235–250.CrossRefMATHADSGoogle Scholar
  9. Bohrer, H. and Ambohl, A.H. 1975. Die Einleitung von gereinigtem Abwasser in Seen. Schweiz. Z. Hydrol., 37, 347–369.Google Scholar
  10. Charney, J.G. 1955. Generation of oceanic currents by wind. J. Mar. Res., 14, 477–498.Google Scholar
  11. Defant, A. 1961. Physical Oceanography. Oxford University Press, Oxford.Google Scholar
  12. Defant, F. 1953. Theorie der Seiches des Michigansees und ihre Abwandlung durch Wirkung der Corioliskraft. Arch. Met. Geophys. Biokl., A 6, 218–241.CrossRefGoogle Scholar
  13. Ertel, H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Meteorolog. Z., 59, 277–281.Google Scholar
  14. Galazii, G.I. ed. 1969. Baikal Atlas. Limnol. Inst. Acad. Sci. Ussr. Siberian Section, publ. by Govt. Dept. Geodasy and Cartography, Irkutsk and Moscow, 30 p.Google Scholar
  15. Gill, A.E. 1982. Atmosphere - Ocean Dynamics. Academic Press, San Diego etc.Google Scholar
  16. Gonella, J.A. 1974. Effect d’écran d’une thermocline observationes faites sur la bonéelaboratoire. La Houille Blanche, 78, 607–613.CrossRefGoogle Scholar
  17. Greenspan, H.P. 1968. The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
  18. Gustafson, T. and Kullenberg, B. 1936. Untersuchungen von Trägheitsströmungen in der Ostsee. Svensk. Hydrgr.-Biol. Komm. Skr. (New Series)Hydrogr., 13, 28 pp.Google Scholar
  19. Hamblin, P.F. and Hollan, E. 1978. On the gravitational seiches of Lake Constance and their generation. Schweiz. Z. Hydr., 40, 119–154.Google Scholar
  20. Heaps, N.S. 1961. Seiches in a narrow lake, uniformly stratified in three layers. Geophys. Suppl. J. Roy. Astron. Soc., 5, 134–156.CrossRefMATHGoogle Scholar
  21. Hollan, E. 1979. Hydrodynamische Modellrechnungen über die Eigenschwingungen des Bodensee-Obersees mit einer Deutung des Wasserwunders von Konstanz im Jahre 1549. Schw. Verein für Geschichte des Bodensees und seiner Umgebung, 97, 157–192.Google Scholar
  22. Hollan, E. 1980. Die Eigenschwingungen des Bodensee-Obersees und eine Deutung des “Wasserwunders von Konstanz” im Jahre 1549. Deutsches gewässerkundliches Jahrbuch, Issn 0344–0788, Abflussjahr 1979.Google Scholar
  23. Hollan, E., Rao, D.B. and Bauerle, E. 1980. Free surface oscillations in Lake Constance with an interpretation of the “Wonder of the rising water at Konstanz” 1549. Arch. Met. Geophys. Biokl., A 29, 301–325.CrossRefGoogle Scholar
  24. Horn, W., Mortimer, C.H. and Schwab, D.J. 1986. Internal wave dynamics of Lake of Zurich. Limnol. Oceanogr., 31, 1232–1254.CrossRefGoogle Scholar
  25. Huang, J.C.K. and Saylor, J.H. 1982. Vorticity waves in a shallow basin. Dyn. Atmos. Oceans., 6, 177–196.CrossRefADSGoogle Scholar
  26. Nutter, K. 1983. Strömungsdynamische Untersuchungen im Zürich-und im Luganersee. Ein Vergleich von Feldmessungen mit Resultaten theoretischer Modelle. Schweiz. Z. Hydrol., 45, 101–144.Google Scholar
  27. Nutter, K. 1984. Mathematische Vorhersage von barotropen und baroklinen Prozessen im Zürich-und Luganersee. Vierteljahrschrift der Naturforschenden Gesellschaft in Zürich., 129, 51–92.Google Scholar
  28. Nutter, K. 1984 (Ed.). Hydrodynamics of Lakes,Cism Courses and Lectures No 286, Springer Verlag Wien - New York.Google Scholar
  29. Hutter. K. 1987. Hydrodynamic modeling of Lakes. Chapter 22 in: Encyclopedia of Fluid Mechanics (ed. Cheremesinoff), Gulf Publ. Corn. Houston, 6, 897–998.Google Scholar
  30. Hutter, K. 1987. Schwingungen in einem Seensystem: Der Luganersee. Naturwissenschaften, 74, 405–414.CrossRefADSGoogle Scholar
  31. Nutter, K. 1991. Large scale water movements in lakes (with contributions by G. Salvadè, C. Spinedi, F. Zamboni and E. Bäuerle). Aquatic Sciences, 53, 100–135.CrossRefGoogle Scholar
  32. Hutter, K. and Raggio, G. 1982. A Chrystal-model describing gravitational barotropic motion in elongated lakes. Arch. Met. Geophys. Biokl., A 31, 361–378.CrossRefGoogle Scholar
  33. Hutter, K. and Schwab, D.J. 1982. Baroclinic channel models, Internal report No. 62, Laboratory of Hydraulics, Hydrology and Glaciology, Eth Zurich.Google Scholar
  34. Hutter, K., Raggio, G., Bucher, C. and SalvadÉ, G. 1982. The surface seiches of Lake of Zurich. Schweiz. Z. Hydr., 44, 423–454.Google Scholar
  35. Hutter, K., Raggio, G., Bucher, C., SalvadÉ, G. and Zamboni, F. 1982. The surface seiches of the Lake of Lugano. Schweiz. Z. Hydr., 44, 455–484.Google Scholar
  36. Hutter, K., SalvadÉ, G. and Schwab, D.J. 1983. On internal wave dynamics of the Lake of Lugano. Geophys. Astrophys. Fluid Dyn., 27, 299–336.CrossRefADSGoogle Scholar
  37. Johnson, E.R. 1987. Topographic waves in elliptical basins. Geophys. Astrophys. Fluid Dyn., 37, 279–295.CrossRefADSGoogle Scholar
  38. Johnson, E.R. 1987. A conformal mapping technique for topographic wave problems: semi-infinite channels and elongated basins. J. Fluid Mech., 177, 395–405.CrossRefMATHADSGoogle Scholar
  39. Johnson, E.R. 1989. Topographic waves in open domains. Part I: Boundary conditions and frequency estimates. J. Fluid Mech., 200, 69–76.MathSciNetCrossRefMATHADSGoogle Scholar
  40. Kanari, S. 1975. The long period internal waves in Lake Biwa. Limnol. Oceanogr., 20, 544–553.CrossRefGoogle Scholar
  41. Krauss, W. 1966. Methoden und Ergebnisse der theoretischen Ozeanographie. 2. Intern. Wellen, Borntraeger, Berlin-Stuttgart.Google Scholar
  42. Lamb, H. 1932. Hydrodynamics,6th ed., Cambridge University Press.Google Scholar
  43. Larsen, J.C. 1969. Long waves along a single-step topography in a semi-infinite uniformly rotating ocean. J. Mar. Res., 27, 1–6.Google Scholar
  44. Leblond, P.H. and Mysaic, L.A. 1980. Waves in the Ocean, Elsevier Oceanography Series. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York.Google Scholar
  45. Lemmin, U. and Mortimer, C.H. 1986. Tests of an extension to internal seiches of Defant’s procedure for determination of surface seiche characteristics in real lakes. Limnol. Oceanogr., 31, 1207–1231.CrossRefGoogle Scholar
  46. Lighthill, J. 1969. Dynamic response of the Indian Ocean to onset of the southwest monsoon. Phil. Trans. Royal. Soc. London, A 265, 1159, 45–92.CrossRefADSGoogle Scholar
  47. Ligntiill, J. 1978. Waves in Fluids, Cambridge University Press, Cambridge.Google Scholar
  48. Marchuk, G.I. and Sarkisyan, A.S. 1989. Mathematical Modeling of Ocean Circulation, Springer Verlag Berlin etc., 292 pp.Google Scholar
  49. Miles, J.W. and Ball, F.K. 1963. On free-surface oscillations in a rotating paraboloid. J. Fluid Mech., 17, 257–266.MathSciNetCrossRefADSGoogle Scholar
  50. Mortimer, C.H. 1952. Water movements in lakes during summer stratification; evidence from the distribution of temperature in Windermere. Phil. Trans. Royal Soc. London, B 236, 355–404.CrossRefADSGoogle Scholar
  51. Mortimer, C.H. 1963. Frontiers in physical limnology with particular reference to long waves in rotating basins. In: Proc. 5th Conf. Great Lakes Res., Great Lakes Res. Div. Univ. Mich., 9, 9–42.Google Scholar
  52. Mortimer, C.H. 1971. Large scale oscillatory motions and seasonal temperature changes in Lake Michigan and Lake Ontario. Special Report No 12, Part I, 111 pp: Text, Part II, 106 pp: Illustrations, Center for Great Lakes studies, The University of Wisconsin-Milwaukee.Google Scholar
  53. Mortimer, C.H. 1974. Lake hydrodynamics. Mitt. Int. Ver. Theor. Angew. Limnol., 20, 124–197.Google Scholar
  54. Mortimer, C.H. 1975. Substantive corrections to Sil Communications (Ivl Mitteilungen) Numbers 6 and 20, Mitt. Int. Ver. Theor. Angew. Limnol., 19, 60–72.Google Scholar
  55. Mortimer, C.H. 1977. Internal waves observed in Lake Ontario during the International Field Year for the Great Lakes (Ifygl), 1977: Descriptive theory and preliminary interpretations of near-inertial oscillations in terms of linear channel-wave models. Special Report No 32, Center for Great Lakes Studies, The University of Winconsin-Milwaukee, 122 p.Google Scholar
  56. Mortimer, C.H. 1979. Strategies for coupling data collection and analysis with the dynamic modelling of lake motions. In: Lake hydrodynamics (eds. W.H. Graf, C.H. Mortimer, Elsevier, Amsterdam, 183–222.CrossRefGoogle Scholar
  57. MoRtimer, C.H. 1980. Internal motion and related internal waves in Lake Michigan and Lake Ontario as responses to impulsive wind stresses. Special Report No 37, Center for Great Lakes Studies, The University of Winconsin-Milwaukee, 192 p.Google Scholar
  58. Mortimer, C.H. and Fee, E.J. 1976. Free surface oscillations and tides of Lakes Michigan and Superior, Phil. Trans. Royal Soc. London, 281, 1–61.CrossRefADSGoogle Scholar
  59. Miiileisen, R. and Kurtii, W. 1978. Experimental investigations on the seiches of Lake Constance. Schweiz. Z. Ilydr., 40.Google Scholar
  60. Mysak, L.A. 1980a. Recent advances in shelf wave dynamics. Reviews of Geophysics and Space Physics, 18, 211–241.CrossRefADSGoogle Scholar
  61. Mysak, L.A. 1980b. Topographically trapped waves. Ann. Rev. Fluid Mech., 12, 45–76.MathSciNetCrossRefADSGoogle Scholar
  62. Mysak, L.A. 1984. Topographic waves in lakes, in Hydrodynamic of Lakes, Cism 286, K. Nutter (Ed.), 81–128, Springer, Wien-New York.Google Scholar
  63. Mysak, L.A., SalvadÈ, G., Hutter, K. and Scheiwiller, T. 1983. Lake of Lugano and topographic waves. Nature, 306, 46–48.CrossRefADSGoogle Scholar
  64. Mysak, L.A., SalvadÉ, G., Hutter, K. and Scheiwiller, T. 1985. Topographic waves in elliptical basin, with application to the Lake of Lugano. Phil. Trans. R. Soc. London, 316, 1–55.CrossRefMATHADSGoogle Scholar
  65. Oman, G. 1982. Das Verhalten des geschichteten Zürichsees unter äußeren Windlasten. Mitt. No. 60 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der Eth Zürich, 185pp.Google Scholar
  66. Phillips, O.M. 1966. The Dynamics of the Upper Ocean. Cambridge University Press, Cambridge.MATHGoogle Scholar
  67. Platzmann, G.W. 1972. Two-dimensional free oscillation in natural basins. J. Phys. Oceanogr., 2, 117–138.CrossRefADSGoogle Scholar
  68. Platzmann, G.W. and Rao, D.B. 1964. The free oscillations of Lake Erie. Studies in Oceanography ( Hidaka Volume ), Tokyo University Press, 359–382.Google Scholar
  69. Platzmann, G.W. and Rao, D.B. 1964. Spectra of Lake Erie water levels, J. Geophys. Res., 69, 225.Google Scholar
  70. PoincarÉ, H. 1910. Théorie des Marées. Seçons de Mécanique Celeste, 3, GauthiersVillars, Paris.Google Scholar
  71. Raggio, G. and Hutter, K. 1982. An extended channel model for the prediction of motion in elongated homogeneous lakes. Part 1: Theoretical Introduction, J. Fluid Mech., 121, 231–255.CrossRefMATHADSGoogle Scholar
  72. Raggio, G. and Hutter, K. 1982. An extended channel model for the prediction of motion in elongated homogeneous lakes. Part 2: First order model applied to ideal geometry; rectangular basin with flat bottom, J. Fluid Mech., 121, 257–281.CrossRefMATHADSGoogle Scholar
  73. Raggio, G. and Hutter, K. 1982. An extended channel model for the prediction of motion in elongated homogeneous lakes. Part 3: Free oscillations in natural basins, J. Fluid Mech., 121, 283–299.CrossRefMATHADSGoogle Scholar
  74. Rao, D.B. 1966. Free gravitational oscillations in rotating rectangular basins, J. Fluid Mech., 24, 523–555.CrossRefADSGoogle Scholar
  75. Rhines, P.B. 1969. Slow oscillations in an ocean of varying depth, J. Fluid Mech., 37, 161–205.CrossRefMATHADSGoogle Scholar
  76. Rossby, C.G. 1936. Dynamics of steady ocean currents in the light of experimental fluid mechanics, Pap. Phys. Oceanogr. Met., 5, (1), 1–43.Google Scholar
  77. Rossby, C.G. 1937. On the mutual adjustment of pressure and velocity distributions in certain simple current systems. I. J. Mar. Res., 1, 15–28.Google Scholar
  78. Rossby, C.G. 1938. On the mutual adjustment of pressure and velocity distributions in certain simple current systems. II. J. Mar. Res., 2, 239–263.CrossRefGoogle Scholar
  79. Rosssy, C.G. 1938. On temperature changes in the stratosphere resulting from shrinking and stretching. Beitr. Phys. Freien Atmos., 24, 53–59.Google Scholar
  80. Rossby, C.G. 1940. Planetary flow patterns in the atmosphere. Q.J.R. Meteorol. Soc., 66, Suppl., 68–97.Google Scholar
  81. Rossby, C.G., et al. 1939. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 38–55.CrossRefGoogle Scholar
  82. Salvadi, G. and Zamboni, F. 1987. External gravity oscillations of the coupled basins of the Lake of Lugano. Annales Geophysicae, 5B, 247–254.Google Scholar
  83. SalvadÉ, G., Zamboni, F. and Barbieri, A. 1988. Three-layer model of the North basin of the Lake of Lugano. Annales Geophysicae, 6, 463–474.Google Scholar
  84. Sato, G.K. and Mortimer, C.H. 1975. Lake currents and temperatures near the western shore of Lake Michigan. Special Report No 22, Center for Great Lake Studies, The University of Wisconsin-Milwaukee.Google Scholar
  85. Saylor, J.H., Huang, J.S.K. and Reid, R.O. 1980. Vortex modes in Southern Lake Michigan. J. Phys. Oceanogr., 10, 1814–1823.CrossRefADSGoogle Scholar
  86. Saylor, J.H. and Miller, G.S. 1983. Vortex Modes of Particular Great Lakes Basins, Great Lakes Environmental Research Laboratory, Constribution No. 394, Noaa, Ann Arbor, Michigan.Google Scholar
  87. Schwab, D.J. 1977. Internal free oscillations in Lake Ontario, Limnol. Oceanogr. 22, 700–708.MathSciNetCrossRefGoogle Scholar
  88. Schwab, D.J. and Rao, D.B. 1977. Gravitational oscillations of Lake Huron, Saginow Bay, Georgian Bay, and the North Channel, J. Geophys. Research 82, 2105–2116.CrossRefADSGoogle Scholar
  89. Sezawa, K. and Kanai, K. 1939. On shallow water waves transmitted in the direction parallel to a sea coast, with special reference to long-waves in heterogeneous media, Bull. Earthquake Res. Inst. Tokyo, 17, 685–694.MathSciNetGoogle Scholar
  90. Snodgrass, F.E., Munk, W.H. and Miller, G.R. 1962. Long-period waves over California’s continental borderland. I: Background spectra, J. Mar. Res., 20, 3–30.Google Scholar
  91. Stocker, T. 1988. A numerical study of topographic wave reflection in semi-infinite channels. J. Phys. Oceanogr., 18, 609–618.CrossRefADSGoogle Scholar
  92. Stocker, T. and Nutter, K. 1986. One-dimensional models for topographic Rossby waves in elongated basins on the f-plane, J. Fluid Mech., 170, 435–459.CrossRefMATHADSGoogle Scholar
  93. Stocker, T. and Nutter, K. 1987. Topographic waves in channels and lakes on the f-plane, Lecture Notes on Coastal and Estuarine Studies, 9, Springer Verlag, Berl in etc.Google Scholar
  94. Stocker, T. and Butter, K. 1987. Topographic Rossby waves in rectangular basins, J. Fluid Mech., 185, 107–120.CrossRefMATHADSGoogle Scholar
  95. Stocker, T. and Hutter, K. 1990. Qualitative aspects of topographic waves in closed basins gulfs and channels, in: Modeling Marine Systems, I, ( A.M. Davies, ed. ), Crc-Press, 255–289.Google Scholar
  96. Stocker, T. and Johnson, E.R. 1989. Topographic waves in open domains. Part II. Bay modes and resonances. J. Fluid Mech., 200, 77–93.MathSciNetCrossRefMATHADSGoogle Scholar
  97. Stocker, T. and Johnson, E.R. 1991. The trapping and scattering of topographic waves by estuaries and headlands. J. Fluid Mech., 222, 501–524.CrossRefMATHADSGoogle Scholar
  98. Stocker, T. and Johnson, E.R. 1992. Transmission and reflection of shelf waves by esteraries and beadlands J. Fluid Mech., to appear.Google Scholar
  99. Stocker, K., Hutter, K., SalvadÉ, G., TRÖSch, J. and Zamboni, F. 1987. Observations and analysis of internal seiches in the Southern basin of Lake Lugano. Annales Geophysicae, 5, 553–568.Google Scholar
  100. Taylor, G.I. 1922. Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc. Ser. 2, 20, 148–181.CrossRefGoogle Scholar
  101. Tison, L.J. and Tison, G. Jr. 1969. Seiches et dénivellations causées par le vent dans les lacs, baies, estuaries. Note Technique No. 102, Organisation Méteorologique Mondiale, Genève, Suisse.Google Scholar
  102. Turner, J.S. 1973. Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
  103. TRÖSch, J. 1984. Finite element calculation of topographic waves in lakes. Proceedings of the 4th International Conference on Applied Numerical Modeling, Tainan, Taiwan.Google Scholar
  104. Van Dyck, M. 1976. An album of fluid motions, Parabolic Press, Palo Alto.Google Scholar
  105. Wenzel, M. 1978. Interpretation der Wirbel im Bornholmbecken durch topographische Rossby Wellen in einem Kreisbecken. Diplomarbeit, Christian Albrechts Universität Kiel, 52 pp.Google Scholar
  106. Willmot, A.J. and Johnson, E.R. 1989. Topographic waves in a rotating stratified basin. Geophys. Astrophys. Fluid Dynamics, 45, 71–87.CrossRefADSGoogle Scholar
  107. Witham, G.B. 1974. Linear and Non-linear Waves. Wiley, New York.Google Scholar
  108. Yih, C.S. 1965. Dynamics of Nonhomogeneous Fluids. MacMillan, New York.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • Kolumban Hutter
    • 1
  1. 1.Institut für MechanikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations