Skip to main content

Perspective on Eulerian Finite Volume Methods for Incompressible Interfacial Flows

  • Conference paper
Free Surface Flows

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 391))

Abstract

Incompressible interfacial flows here refer to those incompressible flows possessing multiple distinct, immiscible fluids separated by interfaces of arbitrarily complex topology. A prototypical example is free surface flows, where fluid properties across the interface vary by orders of magnitude. Interfaces present in these flows possess topologies that are not only irregular but also dynamic, undergoing gross changes such as merging, tearing, and filamenting as a result of the flow and interface physics such as surface tension and phase change. The interface topology requirements facing an algorithm tasked to model these flows inevitably leads to an underlying Eulerian methodology. The discussion herein is confined therefore to Eulerian schemes, with further emphasis on finite volume methods of discretization for the partial differential equations manifesting the physical model.

Numerous algorithm choices confront users and developers of simulation tools designed to model the time-unsteady incompressible Navier-Stokes (NS) equations in the presence of interfaces. It remains difficult to select or devise algorithms whose shortcomings are not manifested while modeling the problem at hand. In the following, many algorithms are reviewed briefly and commented on, but special attention is paid to projection methods for the incompressible NS equations, volume tracking methods for interface kinematics, and immersed interface methods for interface dynamics such as surface tension. At present, the quest for improved interfacial flow algorithms continues and the future looks very promising. This perspective will hopefully provide “field guidance” useful in devising algorithms whose weaknesses are not magnified when applied to your problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Aleinov and E. G. Puckett. Computing surface tension with high-order kernels. In H. A. Dwyer, editor, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, pages 13–18, Lake Tahoe, NV, 1995.

    Google Scholar 

  2. A. S. Almgren, J. B. Bell, P. Colella, and L. H. Howell. An adaptive projection method for the incompressible Euler equations. In J. L. Thomas, editor, Proceedings of the AIAA Eleventh Computational Fluid Dynamics Conference,pages 530–539, 1993. See also AIAA Paper 93–3345.

    Google Scholar 

  3. A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. SIAM Journal on Scientific Computing, 17: 358–369, 1996.

    MATH  MathSciNet  Google Scholar 

  4. A. A. Amsden and F. H. Harlow. The SMAC method: A numerical technique for calculating incompressible fluid flows. Technical Report LA-4370, Los Alamos National Laboratory, 1970.

    Google Scholar 

  5. L. K. Antanovskii. A phase field model of capillarity. Physics of Fluids, 7: 747–753, 1995.

    ADS  MATH  MathSciNet  Google Scholar 

  6. S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nuclear Science and Engineering, 124: 145–159, 1996.

    Google Scholar 

  7. N. Ashgriz and J. Y. Poo. FLAIR–flux line-segment model for advection and interface reconstruction. Journal of Computational Physics, 93: 449–468, 1991.

    ADS  MATH  Google Scholar 

  8. P. Bach and O. Hassager. An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics and applications to free surface flow. Journal of Fluid Mechanics, 152: 73–210, 1985.

    Google Scholar 

  9. T. J. Barth and D. C. Jesperson. The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89–0366, AIAA, 1989. Presented at the 27th Aerospace Sciences Meeting and Exhibit.

    Google Scholar 

  10. J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method of the incompressible Navier-Stokes equations. Journal of Computational Physics, 85: 257–283, 1989.

    ADS  MATH  MathSciNet  Google Scholar 

  11. J. B. Bell, P. Colella, and L. Howell. An efficient second-order projection method for viscous incompressible flow. In D. Kwak, editor, Proceedings of the AIAA Tenth Computational Fluid Dynamics Conference,pages 360–367, 1991. AIAA Paper 91–1560.

    Google Scholar 

  12. J. B. Bell, C. N. Dawson, and G. R. Shubin. An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions. Journal of Computational Physics, 74: 1–24, 1988.

    ADS  MATH  Google Scholar 

  13. J. B. Bell and D. L. Marcus. A second-order projection method for variable-density flows. Journal of Computational Physics, 101: 334–348, 1992.

    ADS  MATH  Google Scholar 

  14. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139: 3–47, 1996.

    ADS  MATH  Google Scholar 

  15. G. Birkhoff. Helmholtz and Taylor instability. In Symposium on Applied Mathematics, volume 13, pages 55–76, Providence, RI, 1962. American Mathematical Society. Volume X III.

    Google Scholar 

  16. A. Björk. Numerical Methods for Least Squares Problems. SIAM, 1996.

    Google Scholar 

  17. A. A. Bourlioux. A coupled level set volume of fluid algorithm for tracking material interfaces. In H. A. Dwyer, editor, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, pages 15–22, Lake Tahoe, NV, 1995.

    Google Scholar 

  18. J. Brackbill, 1995. Personal Communication.

    Google Scholar 

  19. J. U. Brackbill. The ringing instability in particle-in-cell calculations of low-speed flow. Journal of Computational Physics, 75: 469–484, 1988.

    ADS  MATH  MathSciNet  Google Scholar 

  20. J. U. Brackbill and D. B. Kothe. Dynamical modeling of surface tension. Technical Report LA-UR-96–1706, Los Alamos National Laboratory, 1996.

    Google Scholar 

  21. J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. FLIP: A low-dissipation, particlein-cell method for fluid flow. Computer Physics Communications, 48: 25–38, 1988.

    ADS  Google Scholar 

  22. J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modeling surface tension. Journal of Computational Physics, 100: 335–354, 1992.

    ADS  MATH  MathSciNet  Google Scholar 

  23. J. U. Brackbill and H. M. Ruppel. FLIP: A method for adaptively zoned, particlein-cell calculations of fluid flows in two dimensions. Journal of Computational Physics, 65: 314–343, 1985.

    ADS  Google Scholar 

  24. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31: 333–390, 1977.

    MATH  MathSciNet  Google Scholar 

  25. W. L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, PA, 1987.

    Google Scholar 

  26. D. L. Brown and M. L. Minion. Performance of underresolved two-dimensional incompressible flow simulations. Journal of Computational Physics, 122: 165–183, 1995.

    ADS  MATH  MathSciNet  Google Scholar 

  27. G. Caginalp. Stefan and Hele-Shaw models as asymptotic limits of the phase-field equations. Physical Review A, 39: 5887–5896, 1989.

    MATH  MathSciNet  Google Scholar 

  28. J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. Journal of Chemical Physics, 31: 688–699, 1959.

    ADS  Google Scholar 

  29. X.-C. Cai. A family of overlapping Schwarz algorithms for nonsymmetric and indefinite elliptic problems. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors, Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering, pages 1–19, Philadelphia, PA, 1995. SIAM.

    Google Scholar 

  30. L. S. Caretto, A. D. Gosman, S. V. Patankar, and D. B. Spalding. Two calculation procedures for steady, three-dimensional with recirculation. In Proceedings of the Third International Conference on Numerical Methods for Fluid Dynamics, Paris, France, 1972.

    Google Scholar 

  31. K. S. Chan, K. A. Pericleous, and M. Cross. Numerical simulation of flows encountered during mold-filling. Applied Mathematical Modelling, 15: 624–631, 1991.

    MATH  Google Scholar 

  32. I-L. Chern, J. Glimm, O. McBryan, B. Plohr, and S. Yaniv. Front tracking for gas dynamics. Journal of Computational Physics, 62: 83–110, 1986.

    ADS  MATH  MathSciNet  Google Scholar 

  33. A. J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 2: 12–26, 1967.

    ADS  MATH  Google Scholar 

  34. A. J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22: 745–762, 1968.

    MATH  MathSciNet  Google Scholar 

  35. A. J. Chorin and G. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, 1993.

    Google Scholar 

  36. P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. Journal of Computational Physics, 87: 171–200, 1990.

    ADS  MATH  MathSciNet  Google Scholar 

  37. P. Colella and P. Woodward. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics, 54: 174–201, 1984.

    ADS  MATH  MathSciNet  Google Scholar 

  38. A. V. Coward, Y. Y. Renardy, M. Renardy, and J. R. Richards. Temporal evolution of periodic disturbances in two-layer couette flow. Journal of Computational Physics, 132: 346–361, 1997.

    ADS  MATH  MathSciNet  Google Scholar 

  39. B. J. Daly. Numerical study of two fluid Rayleigh-Taylor instability. Physics of Fluids, 10: 297–307, 1967.

    ADS  MATH  Google Scholar 

  40. B. J. Daly and W. E. Pracht. Numerical study of density-current surges. Physics of Fluids, 11: 15–30, 1968.

    ADS  MATH  Google Scholar 

  41. R. DeBar. Fundamentals of the KRAKEN code. Technical Report UCIR-760, Lawrence Livermore National Laboratory, 1974.

    Google Scholar 

  42. J. K. Dukowicz. New methods for conservative rezoning (remapping) for general quadrilateral meshes. Technical Report LA-10112-C, Los Alamos National Laboratory, 1984.

    Google Scholar 

  43. A. S. Dvinsky and J. K. Dukowicz. Null-space-free methods for the incompressible Navier-Stokes equations on non-staggered curvilinear grids. Computers and Fluids, 22: 685–696, 1993.

    MATH  MathSciNet  Google Scholar 

  44. J. Eggers. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics, 69: 865–929, 1997.

    ADS  MATH  Google Scholar 

  45. R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1993.

    MATH  Google Scholar 

  46. R. C. Ferrell, D. B. Kothe, and J. A. Turner. PGSLib:,A library for portable, parallel, unstructured mesh simulations. In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March 14–17, 1997.

    Google Scholar 

  47. J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer-Verlag, 1996.

    Google Scholar 

  48. C. A. J. Fletcher. Computational Techniques for Fluid Dynamics: Volume II. Springer-Verlag, 1988.

    Google Scholar 

  49. M. J. Fritts and J. P. Boris. The Lagrangian solution of transient problems in hydrodynamics using a triangular mesh. Journal of Computational Physics, 31: 173–215, 1979.

    ADS  MATH  MathSciNet  Google Scholar 

  50. M. J. Fritts, W. P. Crowley, and H. E. Trease. The Free Lagrange Method. Springer-Verlag, New York, 1985. Lecture Notes in Physics, Volume 238.

    Google Scholar 

  51. B. Fryxell, E. Müller, and D. Arnett. Instabilities and clumping in SN 1987a. I. Early evolution in two dimensions. Astrophysical Journal, 367: 619–634, 1991.

    ADS  Google Scholar 

  52. S. H. Garrioch and B. R. Baliga. A multidimensional advection technique for PLIC volume-of-fluid methods. In Proceedings of the Fifth Annual Conference of the Computational Fluid Dynamics Society of Canada, pages 11(3)-11(8), University of Victoria, Victoria, British Columbia, 1997.

    Google Scholar 

  53. A. S. Geller, S. H. Lee, and L. G. Leal. Motion of a particle normal to a deformable surface. Journal of Fluid Mechanics, 169: 27–69, 1986.

    ADS  MATH  Google Scholar 

  54. D. Gidaspow. Multiphase Flow and Fluidization. Academic Press, New York, 1994.

    MATH  Google Scholar 

  55. R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181: 375–389, 1977.

    ADS  MATH  Google Scholar 

  56. J. Glimm and O. A. McBryan. A computational model for interfaces. Advances in Applied Mathematics, 6: 422–435, 1985.

    MathSciNet  Google Scholar 

  57. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 1989.

    Google Scholar 

  58. D. Gottlieb and S. A. Orzag. Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia, PA, 1977.

    MATH  Google Scholar 

  59. H. Haj-Hariri, Q. Shi, and A. Borhan. Effect of local property smearing on global variables: Implication for numerical simulations of multiphase flows. Physics of Fluids, Part A, 6: 2555–2557, 1994.

    MATH  Google Scholar 

  60. F. H. Harlow. Hydrodynamic problems involving large fluid distortions. Journal of the Association for Computing Machinery, 4: 137–142, 1957.

    Google Scholar 

  61. F. H. Harlow. PIC and its progeny. Computer Physics Communications, 48: 1–11, 1988.

    ADS  Google Scholar 

  62. F. H. Harlow and A. A. Amsden. A simplified MAC technique for incompressible fluid flow calculations. Journal of Computational Physics, 6: 322–325, 1970.

    ADS  MATH  Google Scholar 

  63. F. H. Harlow and M. W. Evans. A machine calculation method for hydrodynamics problems. Technical Report LAMS-1956, Los Alamos National Laboratory, 1955.

    Google Scholar 

  64. F. H. Harlow and J. P. Shannon. Distortion of a splashing liquid drop. Science, 157: 547–550, 1967.

    ADS  Google Scholar 

  65. F. H. Harlow and J. P. Shannon. The splash of a liquid drop. Journal of Applied Physics, 38: 3855–3866, 1967.

    ADS  Google Scholar 

  66. F. H. Harlow, J. P. Shannon, and J. E. Welch. Liquid waves by computer. Science, 149: 1092–1093, 1965.

    ADS  Google Scholar 

  67. F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids, 8: 2182–2189, 1965.

    ADS  MATH  Google Scholar 

  68. F. H. Harlow and J. E. Welch. Numerical study of large-amplitude free-surface motions. Physics of Fluids, 9: 842–851, 1966.

    ADS  Google Scholar 

  69. C. W. Hirt, A. A. Amsden, and J. L. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14: 227–253, 1974.

    ADS  MATH  Google Scholar 

  70. C. W. Hirt, J. L. Cook, and T. D. Butler. A Lagrangian method for calculating the dynamics of an incompressible fluid with a free surface. Journal of Computational Physics, 5: 103–124, 1970.

    ADS  MATH  Google Scholar 

  71. C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39: 201–225, 1981.

    ADS  MATH  Google Scholar 

  72. K. S. Holian, S. J. Mosso, D. A. Mandell, and R. Henninger. MESA: A 3-D computer code for armor/anti-armor applications. Technical Report LA-UR-91569, Los Alamos National Laboratory, 1991.

    Google Scholar 

  73. T.Y. Hou. Numerical solutions to free boundary problems. Acta Numerica, pages 335–415, 1995.

    Google Scholar 

  74. T.Y. Hou, J.S. Lowengrub, and M.J. Shelley. Removing the stiffness from interfacial flows with surface tension. Journal of Computational Physics, 114: 312–338, 1994.

    ADS  MATH  MathSciNet  Google Scholar 

  75. L. H. Howell. A multilevel adaptive projection method for unsteady incompressible flow. In N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors, Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, pages 243–257, Copper Mountain, CO, 1993.

    Google Scholar 

  76. R. I. Issa. Solution of implicitly discretized fluid flow equations by operator splitting. Journal of Computational Physics, 62: 40–65, 1986.

    ADS  MATH  MathSciNet  Google Scholar 

  77. D. Jacqmin. An energy approach to the continuum surface method. Technical Report 96–0858, AIAA, 1996. Presented at the 34th Aerospace Sciences Meeting.

    Google Scholar 

  78. D. Jacqmin. Phase-field numerics of two-phase Navier-Stokes flows. Technical report, NASA Lewis Research Center, 1997. Submitted to the Journal of Computational Physics.

    Google Scholar 

  79. D. Jacqmin. A variational approach to deriving smeared interface surface tension models. In V. Venkatakrishnan, M. D. Salas, and S. R. Chakravarthy, editors, Workshop on Barriers and Challenges in Computational Fluid Dynamics, pages 231–240, Boston, MA, 1998. Kluwer Academic Publishers.

    Google Scholar 

  80. Y. N. Jeng and J. L. Chen. Truncation error analysis of the finite volume method for a model steady convective equation. Journal of Computational Physics, 100: 64–76, 1992.

    ADS  MATH  MathSciNet  Google Scholar 

  81. D. Juric. Direct numerical simulation of solidification microstructures affected by fluid flow. In Modeling of Casting, Welding, and Advanced Solidification Processes VIII,New York, 1998. TMS Publishers.

    Google Scholar 

  82. D. Juric and G. Tryggvason. A front-tracking method for dendritic solidification. Journal of Computational Physics, 123: 127–148, 1996.

    ADS  MATH  MathSciNet  Google Scholar 

  83. D. Juric and G. Tryggvason. Numerical simulations of phase change in micro-gravity. Heat Transfer in Microgravity Systems, 332: 33–44, 1996.

    Google Scholar 

  84. D. Juric and G. Tryggvason. Computations of boiling flows. Technical Report LA—UR-97–1145, Los Alamos National Laboratory, 1997. Accepted for publication in the International Journal of Multiphase Flow.

    Google Scholar 

  85. R. Kettler and J. A. Meijerink. A multigrid method and a combined multigridconjugate gradient method for elliptic problems with strongly discontinuous coefficients. Technical Report 604, Shell Corporation, Rijswijk, The Netherlands, 1981.

    Google Scholar 

  86. J. Kim and P. Moin. Application of a fractional step method to incompressible Navier-Stokes equations. Journal of Computational Physics, 59: 308–323, 1985.

    ADS  MATH  MathSciNet  Google Scholar 

  87. S.-O. Kim and H. C. No. Second-order model for free surface convection and interface recontruction. International Journal for Numerical Methods in Fluids, 26: 79–100, 1998.

    ADS  MATH  Google Scholar 

  88. R. Kobayashi. Modeling and numerical simulations of dendritic crystal growth. Physica D, 63: 410–423, 1993.

    ADS  MATH  Google Scholar 

  89. D. B. Kothe. PAGOSA: A massively-parallel, multi-material hydrodynamics model for three-dimensional high-speed flow and high-rate deformation. Technical Report LA—UR-92–4306, Los Alamos National Laboratory, 1992.

    Google Scholar 

  90. D. B. Kothe. Computer simulation of metal casting processes: A new approach. Technical Report LALP-95–197, Los Alamos National Laboratory, 1995.

    Google Scholar 

  91. D. B. Kothe and J. U. Brackbill. FLIP-INC: A Particle-in-Cell method for incompressible flows, 1992. Unpublished manuscript.

    Google Scholar 

  92. D. B. Kothe, J. U. Brackbill, and C. K. Choi. Implosion symmetry of heavyion-driven inertial confinement fusion targets. Physics of Fluids B, 2: 1898–1906, 1990.

    ADS  Google Scholar 

  93. D. B. Kothe, R. C. Ferrell, J. A. Turner, and S. J. Mosso. A high resolution finite volume method for efficient parallel simulation of casting processes on unstructured meshes. In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March 14–17, 1997.

    Google Scholar 

  94. D. B. Kothe and R. C. Mjolsness. RIPPLE: A new model for incompressible flows with free surfaces. AIAA Journal, 30: 2694–2700, 1992.

    ADS  MATH  Google Scholar 

  95. D. B. Kothe, R. C. Mjolsness, and M. D. Torrey. RIPPLE: A computer program for incompressible flows with free surfaces. Technical Report LA-12007—MS, Los Alamos National Laboratory, 1991.

    Google Scholar 

  96. D. B. Kothe and W. J. Rider. Comments on modelling interfacial flows with volume-of-fluid methods. Technical Report LA—UR-3384, Los Alamos National Laboratory, 1994.

    Google Scholar 

  97. D. B. Kothe and W. J. Rider. Constrained minimization for monotonic reconstruction. In D. Kwak, editor, Proceedings of the Thirteenth AIAA Computational Fluid Dynamics Conference,pages 955–964, 1997. AIAA Paper 97–2036.

    Google Scholar 

  98. D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, and J. I. Hochstein. Volume tracking of interfaces having surface tension in two and three dimensions. Technical Report AIAA 96–0859, AIAA, 1996.9 Presented at the 34rd Aerospace Sciences Meeting and Exhibit.

    Google Scholar 

  99. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. Journal of Computational Physics, 113: 134–147, 1994.

    ADS  MATH  MathSciNet  Google Scholar 

  100. M. Lai, J. B. Bell, and P. Colella. A projection method for combustion in the zero Mach number limit. In J. L. Thomas, editor, Proceedings of the AIAA Eleventh Computational Fluid Dynamics Conference,pages 776–783, 1993. See also AIAA Paper 93–3369.

    Google Scholar 

  101. M. Lai and P. Colella. An approximate projection method for incompressible flow. Submitted to the Journal of Computational Physics, 1995.

    Google Scholar 

  102. M. F. Lai. A Projection Method for Reacting Flow in the Zero Mach Number Limit. PhD thesis, University of California at Berkeley, 1993.

    Google Scholar 

  103. B. Lally, R. Ferrell, D. Knoll, D. Kothe, and J. Turner. Parallel two-level additive-Schwarz preconditioning on 3D unstructured meshes for solution of solidification problems. In T. Manteuffel and S. McCormick, editors, Proceedings of the Eighth Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, 1998. 19

    Google Scholar 

  104. B. E. Launder and D. B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3: 269–289, 1974.

    ADS  MATH  Google Scholar 

  105. A. Leonard. Vortex methods for flow simulation. Journal of Computational Physics, 37: 289–335, 1980.

    ADS  MATH  MathSciNet  Google Scholar 

  106. A. Leonard. Computing three-dimensional incompressible flows with vortex elements. Annual Reviews in Fluid Mechanics, 17: 523–559, 1985.

    ADS  Google Scholar 

  107. M. Lesieur. Turbulence in Fluids. Kluwer Academic Publishers, 1997.

    Google Scholar 

  108. R. J. Leveque. Numerical Methods for Conservation Laws. Birkhäuser, 1990.

    Google Scholar 

  109. R. J. Leveque. High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal on Numerical Analysis, 33: 627–665, 1996.

    MATH  MathSciNet  Google Scholar 

  110. R. J. Leveque and Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis, 31: 1019–1044, 1994.

    MATH  MathSciNet  Google Scholar 

  111. R. W. Lewis, S. E. Navti, and C. Taylor. A mixed Lagrangian-Eulerian approach to modelling fluid flow during mould filling. International Journal for Numerical Methods in Fluids, 25: 931–952, 1997.

    ADS  MATH  Google Scholar 

  112. C. Liu, Z. Liu, and S. McCormick. An efficient multigrid scheme for elliptic equations with discontinuous coefficients. Communications in Applied Numerical Methods, 8: 621–631, 1992.

    MATH  MathSciNet  Google Scholar 

  113. H. Liu, E. J. Lavernia, and R. H. Rangel. Numerical investigation of micropore formation during substrate impact of molten droplets in plasma spray processes. Atomization and Sprays, 4: 369–384, 1994.

    Google Scholar 

  114. A. Meister. Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics, 140: 311–345, 1998.

    ADS  MATH  MathSciNet  Google Scholar 

  115. J. C. Meza and R. S. Tuminaro. A multigrid preconditioner for the semiconductor equations. SIAM Journal on Scientific Computing, 17: 118–132, 1996.

    MATH  MathSciNet  Google Scholar 

  116. M. L. Minion. On the stability of Godunov projection methods for incompressible flow. Journal of Computational Physics, 123: 435–449, 1996.

    ADS  MathSciNet  Google Scholar 

  117. M. L. Minion and D. L. Brown. Performance of under-resolved two-dimensional incompressible flow simulations, II. Journal of Computational Physics, 138: 734–765, 1997.

    ADS  MATH  Google Scholar 

  118. J. J. Monaghan. Particle methods for hydrodynamics. Computer Physics Reports, 3: 71–124, 1985.

    ADS  Google Scholar 

  119. J. J. Monaghan. Smoothed particle hydrodynamics. Annual Reviews in Astronomy and Astrophysics, 30: 543–574, 1992.

    ADS  Google Scholar 

  120. J. J. Monaghan. Simulating free surface flows with SPH. Journal of Computational Physics, 110: 399–406, 1994.

    ADS  MATH  Google Scholar 

  121. N. B. Morley, A. A. Gaizer, and M. A. Abdou. Estimates of the effect of a plasma momentum flux on the free surface of a thin film of liquid metal. In ISFNT-3: Third International Symposium on Fusion Nuclear Technology, 1994.

    Google Scholar 

  122. J. P. Morris. Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids,1997. Submitted.

    Google Scholar 

  123. J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics, 136: 214–226, 1997.

    ADS  MATH  Google Scholar 

  124. D. E. Morton. Numerical Simulation of an Impacting Drop. PhD thesis, The University of Melbourne, Australia, 1997.

    Google Scholar 

  125. S. J. Mosso, B. K. Swartz, D. B. Kothe, and S. P. Clancy. Recent enhancements of volume-tracking algorithms for irregular grids. Technical Report LA-CP-96–227, Los Alamos National Laboratory, 1996.

    Google Scholar 

  126. S. J. Mosso, B. K. Swartz, D. B. Kothe, and R. C. Ferrell. A parallel, volume-tracking algorithm for unstructured meshes. In P. Schiano, A. Ecer, J. Periaux, and N. Satofuka, editors, Parallel Computational Fluid Dynamics: Algorithms and Results Using Advanced Computers, pages 368–375, Capri, Italy, 1997. Elsevier Science.

    Google Scholar 

  127. F. Muttin, T. Coupez, M. Bellet, and J. L. C. Chenot. Lagrangian finite element analysis of time dependent viscous free surface flow using an automatic remeshing technique. International Journal for Numerical Methods in Engineering, 36: 2001–2015, 1993.

    ADS  MATH  Google Scholar 

  128. B. D. Nichols and C. W. Hirt. Methods for calculating multi-dimensional, transient free surface flows past bodies. Technical Report LA—UR-75–1932, Los Alamos National Laboratory, 1975.

    Google Scholar 

  129. W. F. Noh. CEL: A time-dependent, two-space-dimensional, coupled Euler-Lagrange code. Methods in Computational Physics, 3: 117–179, 1964.

    Google Scholar 

  130. W. F. Noh and P. R. Woodward. SLIC (simple line interface method). In A. I. van de Vooren and P. J. Zandbergen, editors, Lecture Notes in Physics 59, pages 330–340, 1976.

    Google Scholar 

  131. H. O. Nordmark. Rezoning for higher order vortex methods. Journal of Computational Physics, 97: 366–397, 1991.

    ADS  MATH  Google Scholar 

  132. E. S. Oran and J. P. Boris. Numerical Simulation of Reactive Flow. Elsivier, 1987.

    Google Scholar 

  133. J. O’Rourke. Computational Geometry in C. Cambridge, 1993.

    Google Scholar 

  134. S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 79: 12–49, 1988.

    ADS  MATH  MathSciNet  Google Scholar 

  135. S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, 1980.

    Google Scholar 

  136. M. Peric, R. Kessler, and G. Scheuerer. Comparison of finite-volume numerical methods with staggered and colocated grids. Computers and Fluids, 16: 389–403, 1988.

    ADS  MATH  Google Scholar 

  137. K. A. Pericleous, K. S. Chan, and M. Cross. Free surface flow and heat transfer in cavities: The SEA algorithm. Numerical Heat Transfer, Part B, 27: 487–507, 1995.

    Google Scholar 

  138. J. S. Perry, K. G. Budge, M. K. W. Wong, and T. G. Trucano. RHALE: A 3-D MMALE code for unstructured grids. In ASME, editor, Advanced Computational Methods for Material Modeling, AMD-Vol. 180/P VP-Vol. 268, pages 159–174, 1993.

    Google Scholar 

  139. C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25: 220–252, 1977.

    ADS  MATH  MathSciNet  Google Scholar 

  140. J. E. Pilliod, Jr. An analysis of piecewise linear interface reconstruction algorithms for volume-of-fluid methods. Master’s thesis, University of California, at Davis, 1992.

    Google Scholar 

  141. C. Pozrikidis. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, 1992.

    Google Scholar 

  142. G. R. Price, G. T. Reader, R. D. Rowe, and J. D. Bugg. A piecewise parabolic interface calculation for volume tracking. In Proceedings of the Sixth Annual Conference of the Computational Fluid Dynamics Society of Canada, University of Victoria, Victoria, British Columbia, 1998.

    Google Scholar 

  143. G. R. Price and R. D. Rowe. An extended piecewise linear volume-of-fluid algorithm for reconstruction of thin interfaces. In Proceedings of the Fifth Annual Conference of the Computational Fluid Dynamics Society of Canada, pages 11(9)-11(14), University of Victoria, Victoria, British Columbia, 1997.

    Google Scholar 

  144. E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus, and W. J. Rider. A second-order projection method for tracking fluid interfaces in variable density incompressible flows. Journal of Computational Physics, 130: 269–282, 1997.

    ADS  MATH  Google Scholar 

  145. G. D. Raithby and G. E. Schneider. Numerical solution of problems in incompressible fluid flow: Treatment of the velocity-pressure coupling. Numerical Heat Transfer, 2: 417–440, 1979.

    ADS  Google Scholar 

  146. J. M. Rallison and A. Acrivos. A numerical study of the deformation and burst of a viscous drop in an extensional flow. Journal of Fluid Mechanics, 89: 191–200, 1978.

    ADS  MATH  Google Scholar 

  147. A. V. Reddy, D. B. Kothe, C. Beckermann, R. C. Ferrell, and K. L. Lam. High resolution finite volume parallel simulations of mould filling and binary solidification on unstructured 3D meshes. In Solidification Processing 1997: Proceedings of the Fourth Decennial International Conference on Solidification Processing,pages 83–87, The University of Sheffield, Sheffield, UK, July 7–10,1997.13

    Google Scholar 

  148. C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal, 21: 1525–1532, 1983.

    ADS  MATH  Google Scholar 

  149. J. R. Richards, A. N. Beris, and A. M. Lenhoff. Steady laminar flow of liquid-liquid jets at high Reynolds numbers. Physics of Fluids, Part A, 5: 1703–1717, 1993.

    MATH  Google Scholar 

  150. J. R. Richards, A. M. Lenhoff, and A. N. Beris. Dynamic breakup of liquid-liquid jets. Physics of Fluids, Part A, 6: 2640–2655, 1994.

    MATH  Google Scholar 

  151. R. D. Richtmyer and K. W. Morton. Difference Methods for Initial Value Problems. Wiley-Interscience, 1967.

    Google Scholar 

  152. W. J. Rider. Approximate projection methods for incompressible flow: Implementation, variants and robustness. Technical Report LA-UR-94–2000, Los Alamos National Laboratory, 1994.

    Google Scholar 

  153. W. J. Rider. The robust formulation of approximate projection methods for incompressible flows. Technical Report LA-UR-94–3015, Los Alamos National Laboratory, 1994.

    Google Scholar 

  154. W. J. Rider. Filtering nonsolenoidal modes in numerical solutions of incompressible flows. Technical Report LA—UR-94–3014, Los Alamos National Laboratory, 1998. Accepted for publication in the International Journal for Numerical Methods in Fluids.

    Google Scholar 

  155. W. J. Rider and D. B. Kothe. A marker particle method for interface tracking. In H. A. Dwyer, editor, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, pages 976–981, Lake Tahoe, NV, 1995.

    Google Scholar 

  156. W. J. Rider and D. B. Kothe. Stretching and tearing interface tracking methods. Technical Report AIAA 95–1717, AIAA, 1995. Presented at the 12th AIAA CFD Conference.

    Google Scholar 

  157. W. J. Rider and D. B. Kothe. Reconstructing volume tracking. Journal of Computational Physics, 141: 112–152, 1998.

    ADS  MATH  MathSciNet  Google Scholar 

  158. W. J. Rider, D. B. Kothe, S. J. Mosso, J. H. Cerruti, and J. I. Hochstein. Accurate solution algorithms for incompressible multiphase fluid flows. Technical Report AIAA 95–0699, AIAA, 1995.15 Presented at the 33rd Aerospace Sciences Meeting and Exhibit.

    Google Scholar 

  159. W. J. Rider, D. B. Kothe, E. G. Puckett, and I. D. Aleinov. Accurate and robust methods for variable density incompressible flows with discontinuities. In V. Venkatakrishnari, M. D. Salas, and S. R. Chakravarthy, editors, Workshop on Barriers and Challenges in Computational Fluid Dynamics,pages 213–230, Boston, MA, 1998.16 Kluwer Academic Publishers.

    Google Scholar 

  160. L. Rosenhead. The point vortex approximation of a vortex sheet. Proceedings of the Royal Society of London, Series A, 134: 170–192, 1932.

    Google Scholar 

  161. M. Rudman. Volume tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24: 671–691, 1997.

    ADS  MATH  MathSciNet  Google Scholar 

  162. M. Rudman. A kernal-based surface tension algorithm. Technical Report (unpublished), Commonweath Scientific and Industrial Research Organization (CSIRO), Highett, Victoria, Australia, 1998.

    Google Scholar 

  163. M. Rudman. A volume-tracking method for incompressible multifluid flows with large density variations. International Journal for Numerical Methods in Fluids,1998. In Press.

    Google Scholar 

  164. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

    Google Scholar 

  165. G. P. Sasmal and J. I. Hochstein. Marangoni convection with a curved and deforming free surface in a cavity. Journal of Fluids Engineering, 116: 577–582, 1994.

    Google Scholar 

  166. W. Schönauer and R. Weiss. An engineering approach to generalized conjugate gradient methods and beyond. Applied Numerical Mathematics, 19: 175–206, 1995.

    MATH  MathSciNet  Google Scholar 

  167. J. A. Sethian. Level Set Methods. Cambridge University Press, 1996.

    Google Scholar 

  168. M. Shashkov. Conservative Finite-Difference Methods on General Grids. CRC Press, 1996.

    Google Scholar 

  169. M. Shashkov, B. Swartz, and B. Wendroff. Local reconstruction of a vector field from its normal components on the faces of grid cells. Journal of Computational Physics, 139: 406–409, 1998.

    ADS  MATH  MathSciNet  Google Scholar 

  170. J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-94–125, Carnegie Mellon University, 1994.

    Google Scholar 

  171. Q. Shi and H. Haj-Hariri. The effects of convection on the motion of deformable drops. Technical Report AIAA 94–0834, AIAA, 1994. Presented at the 32nd Aerospace Sciences Meeting and Exhibit.

    Google Scholar 

  172. T. M. Shih, C. H. Tan, and B. C. Hwang. Effects of grid staggering on numerical schemes. International Journal for Numerical Methods in Fluids, 9: 193–212, 1989.

    ADS  MATH  Google Scholar 

  173. W. Shyy. Computational Modeling for Fluid Flow and Interfacial Transport. Elsevier Science, 1994.

    Google Scholar 

  174. W. Shyy, S. S. Thakur, H. Ouyang, J. Liu, and E. Blosch. Computational Techniques for Complex Transport Phenomena. Cambridge University Press, 1997.

    Google Scholar 

  175. W. Shyy, H. Udaykumar, M. Rao, and R. Smith. Computational Fluid Dynamics with Moving Boundaries. Taylor and Francis, 1996.

    Google Scholar 

  176. P. K. Smolarkiewicz. The multi-dimensional Crowley advection scheme. Monthly Weather Review, 110: 1968–1983, 1982.

    ADS  Google Scholar 

  177. G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, 1976.

    Google Scholar 

  178. G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge, 1986.

    Google Scholar 

  179. J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Wadswork and Brooks/Cole, 1989.

    Google Scholar 

  180. M. Sussman and P. Smereka. Axisymmetric free boundary problems. Journal of Fluid Mechanics, 341: 269–294, 1997.

    ADS  MATH  MathSciNet  Google Scholar 

  181. M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114: 146–159, 1994.

    ADS  MATH  Google Scholar 

  182. P. K. Sweby. High resolution TVD schemes using flux limiters. In B. Engquist, editor, Lectures in Applied Mathematics, volume 22, pages 289–309, 1985.

    Google Scholar 

  183. W. G. Szymczak, J. C. W. Rogers, J. M. Solomon, and A. E. Berger. A numerical algorithm for hydrodynamic free boundary problems. Journal of Computational Physics, 106: 319–336, 1993.

    ADS  MATH  MathSciNet  Google Scholar 

  184. O. Tatebe. The multigrid preconditioned conjugate gradient method. In N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors, Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, pages 621–634, Copper Mountain, CO, 1993.

    Google Scholar 

  185. E. Y. Tau. A second-order projection method for the incompressible NavierStokes equations in arbitary domains. Journal of Computational Physics, 115: 147–152, 1994.

    ADS  MATH  MathSciNet  Google Scholar 

  186. R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par la méthod des pas fractionnaires (II). Archives for Rational Mechanics and Analysis, 33: 377–385, 1969.

    ADS  MATH  MathSciNet  Google Scholar 

  187. R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par la méthod des pas fractionnaires (I). Archives for Rational Mechanics and Analysis, 32: 135–153, 1969.

    ADS  MATH  MathSciNet  Google Scholar 

  188. J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation. Elsevier Science, New York, 1985.

    MATH  Google Scholar 

  189. X. Tong, C. Beckermann, and A. Karma. Phase field simulation of dendritic growth with convection. In B. Thomas and C. Beckermann, editors, Modeling of Casting, Welding, and Advanced Solidification Processes VIII, New York, 1998. TMS Publishers.

    Google Scholar 

  190. G. Tryggvason, B. Bummer, O. Ebrat, and W. Tauber. Computations of multiphase flow by a finite difference/front tracking method. I. Multi-fluid flows. In Lecture Notes for the 29th Computational Fluid Dynamics Lecture Series, Karman Institute for Fluid Mechanics, Belgium, February 23–27, 1998.

    Google Scholar 

  191. S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100: 25–37, 1992.

    ADS  MATH  Google Scholar 

  192. S. O. Unverdi and G. Tryggvason. Computations of multi-fluid flows. Physica D, 60: 70–83, 1992.

    ADS  MATH  Google Scholar 

  193. J. P. van Doormal and G. D. Raithby. Enhancements of the simple method for predicting incompressible fluid flows. Numerical Heat Transfer, 7: 147–163, 1984.

    ADS  Google Scholar 

  194. B. van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. Journal of Computational Physics, 23: 276–299, 1977.

    ADS  MATH  Google Scholar 

  195. B. van Leer. Multidimensional explicit difference schemes for hyperbolic conservation laws. In R. Glowinski and J.-L. Lions, editors, Computing Methods in Applied Sciences and Engineering VI, pages 493–497, 1984.

    Google Scholar 

  196. R. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

  197. V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state solutions. Technical Report 93–0880, AIAA, 1993. Presented at the 31st Aerospace Sciences Meeting.

    Google Scholar 

  198. M. Vinokur. An analysis of finite-difference and finite-volume formulations of conservation laws. Journal of Computational Physics, 81: 1–52, 1989.

    ADS  MATH  MathSciNet  Google Scholar 

  199. S. L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, and G. B McFadden. Thermodynamically consistent phase-field models for solidification. Physica D, 69: 189–200, 1993.

    ADS  MATH  MathSciNet  Google Scholar 

  200. C. E. Weatherburn. On differential invariants in geometry of surfaces, with some applications to mathematical physics. Quarterly Journal of Mathematics, 50: 230–269, 1927.

    Google Scholar 

  201. P. Wesseling. An Introduction to Multigrid Methods. Wiley, 1992.

    Google Scholar 

  202. A. A. Wheeler, B. T. Murray, and R. J. Schaefer. Computation of dendrites using a phase-field model. Physica D, 66: 243–262, 1993.

    ADS  MATH  Google Scholar 

  203. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., 1993.

    Google Scholar 

  204. T. L. Williams. An implicit surface tension model. Master’s thesis, Memphis State University, 1993.

    Google Scholar 

  205. P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54: 115–173, 1984.

    ADS  MATH  MathSciNet  Google Scholar 

  206. T. Yabe. Unified solver CIP for solid, liquid, and gas. Computational Fluid Dynamics Review, 1998. To appear.

    Google Scholar 

  207. T. Yabe and F. Xiao. Description of complex and sharp interface with fixed grids in incompressible and compressible fluids. Computers in Mathematics Applications, 29: 15–25, 1995.

    MATH  MathSciNet  Google Scholar 

  208. N. N. Yanenko. The Method of Fractional Steps. Springer-Verlag, 1971.

    Google Scholar 

  209. R. W. Yeung. Numerical methods in free-surface flows. Annual Reviews in Fluid Mechanics, 14: 395–442, 1982.

    ADS  MathSciNet  Google Scholar 

  210. S. T. Zalesak. A preliminary comparison of modern shock-capturing schemes: Linear advection. In R. Vichnevetsky and R. S. Stepleman, editors, Advances in Computer Methods for Partial Differential Equations, volume 6, pages 15–22. IMACS, 1987.

    Google Scholar 

  211. O. C. Zienkiewicz. The Finite Element Method. McGraw-Hill, New York, NY, 1977.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Kothe, D.B. (1998). Perspective on Eulerian Finite Volume Methods for Incompressible Interfacial Flows. In: Kuhlmann, H.C., Rath, HJ. (eds) Free Surface Flows. International Centre for Mechanical Sciences, vol 391. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2598-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2598-4_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83140-3

  • Online ISBN: 978-3-7091-2598-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics