Advertisement

Thermocapillary Convection

  • H. C. Kuhlmann
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 391)

Abstract

The fluid motion induced by surface tension gradients due to temperature variations along liquid/gas interfaces is reviewed. Attention is focussed on the thermocapillary driven flow inside the liquid rather than on free surface deformations. The general equations for an incompressible Newtonian liquid surrounded by a passive gas are introduced followed by some basic considerations of the thermocapillary flow near the contact point. The Stokes flow in differentially heated cylindrical liquid bridges is calculated revealing the fundamental flow structures when the thermocapillary surface stresses are low. As general characteristics of thermocapillary flows the boundary layer scalings for certain limits of the Marangoni and Prandtl numbers are derived. After a brief review of hydrothermal waves in plane layers two paradigms for thermocapillary driven convection, heated cylindrical liquid bridges and rectangular cavities, are considered in more detail. Flow structures, instabilities, dynamics, and side wall effects are analyzed.

Keywords

Free Surface Prandtl Number Liquid Bridge Critical Reynolds Number Marangoni Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. E. Striven and C. V. Sternling. The Marangoni effects. Nature 187, 186 (1960).ADSCrossRefGoogle Scholar
  2. [2]
    D. T. J. Hurle, editor. Handbook of Crystal Growth. North Holland 1994.Google Scholar
  3. [3]
    Ch. E. Chang and W. R. Wilcox. Inhomogeneities due to thermocapillary flow in floating zone melting. J. Crystal Growth 28, 8 (1975).ADSCrossRefGoogle Scholar
  4. [4]
    C. E. Chang and W. R. Wilcox. Analysis of surface tension driven flow in floating zone melting. Int. J. Heat Mass Transfer 19, 355 (1976).ADSCrossRefMATHGoogle Scholar
  5. [5]
    L. D. Landau and E. M. Lifshitz. Hydrodynamik volume VI of Lehrbuch der Theoretischen Physik. Akademie Verlag 1986.Google Scholar
  6. [6]
    F. Dupret, P. Nicodème, Y. Ryckmans, P. Wouters, and M. J. Crochet. Global modelling of heat transfer in crystal growth furnices. Int. J. Heat Mass Transfer 33, 1849 (1990).CrossRefMATHGoogle Scholar
  7. [7]
    A. D. Myshkis, V. G. Babskii, N. D. Kopachevskii, and L. A. Slobozhanin. Low-Gravity Fluid Mechanics. Springer 1987.Google Scholar
  8. [8]
    F. Raynal. Exact relation between spatial mean enstrophy and dissipation in confined incompressible flows. Phys. Fluids 8, 2242 (1996).ADSCrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    D. Canright. Thermocapillary flow near a cold wall. Phys. Fluids 6, 1415 (1994).ADSCrossRefMATHGoogle Scholar
  10. [10]
    H. C. Kuhhnann, C. Nienhüser, and H. J. Rath. The local flow in a wedge between a rigid wall and a surface of constant shear stress. J. Eng. Math. ( 1998. submitted).Google Scholar
  11. [11]
    H. K. Moffatt and B. R. Duffy. Local similarity solutions and their limitations. J. Fluid Mech. 96, 299 (1980).ADSCrossRefMATHGoogle Scholar
  12. [12]
    W. W. Schultz and C. Gervasio. A study of the singularity of the die swell problem. Q. J. Appl. Math. 43, 407 (1990).CrossRefMATHGoogle Scholar
  13. [13]
    E. B. Dussan V., E. Ramé, and S. Garoff. On identifying the appropriate boundary conditions at a moving contact line: An experimental investigation. J. Fluid Mech. 230, 97 (1991).ADSCrossRefGoogle Scholar
  14. [14]
    Y. D. Shikhmurzaev. Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211 (1997).ADSCrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    J. Koplik and J. R. Banavar. Corner flow in the sliding plate problem. Phys. Fluids 7, 3118 (1995).ADSCrossRefMATHGoogle Scholar
  16. [16]
    R. C. T. Smith. The bending of a semi-infinite strip. Austral. J. Sci. Res. 5, 227 (1952).ADSGoogle Scholar
  17. [17]
    D. D. Joseph. The convergence of biorthogonal series for biharmonic and Stokes flow edge problems. Part I. SIAM J. Appl. Math. 33, 337 (1977).MATHGoogle Scholar
  18. [18]
    D. D. Joseph and L. Sturges. The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II. SIAM J. Appl. Math. 34, 7 (1978).Google Scholar
  19. [19]
    H. C. Kuhlmann. Small amplitude thermocapillary flow and surface deformations in a liquid bridge. Phys. Fluids A 1, 672 (1989).ADSCrossRefMATHGoogle Scholar
  20. [20]
    A. P. Hillman and H. E. Salzer. The roots of sin. Phil. Mag. 34, 575 (1943).MATHMathSciNetGoogle Scholar
  21. [21]
    C. I. Robbins and R. C. T. Smith. A table of roots of sin. Phil. Mag. 39, 1004 (1948).MathSciNetGoogle Scholar
  22. [22]
    P. F. Papkovich. Über eine Form der Lüsung des biharmonischen Problems für das Rechteck. C. (Dokl.) Acad. Sci,USSR 27, 334 (1940).Google Scholar
  23. [23]
    J. Fadle. Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ing. Archiv 11, 125 (1941).CrossRefMathSciNetGoogle Scholar
  24. [24]
    A. M. J. Davis. Thermocapillary convection in liquid bridges: Solution structure and eddy motions. Phys. Fluids A 1, 475 (1989).ADSCrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    A. Rybicki and J. M. Floryan. Thermocapillary effects in liquid bridges. I. Thermocapillary convection. Phys. Fluids 30, 1956 (1987).ADSCrossRefMATHGoogle Scholar
  26. [26]
    H. K. Moffatt. Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1 (1964).ADSCrossRefMATHGoogle Scholar
  27. [27]
    F. Pan and A. Acrivos. Steady flows in rectangular cavities. J. Fluid Mech. 28, 643 (1967).ADSCrossRefGoogle Scholar
  28. [28]
    P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University Press 1981.Google Scholar
  29. [29]
    Rayleigh, Lord. On the instability of jets. Proc. London Math. Soc. 10, 4 (1879).MATHGoogle Scholar
  30. [30]
    M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover 1972.Google Scholar
  31. [31]
    S. Ostrach. Motion induced by capillarity (V. G. Levich Festschrift). In Spalding, editor, Physico-chemical Hydrodynamics volume 2. Advance Publications 1977.Google Scholar
  32. [32]
    L. G. Napolitano. Marangoni boundary layers. In Proceedings of the IIIrd European Symposium on Materials Science in Space page 249. ESA SP-142 1979.Google Scholar
  33. [33]
    M. B. Glauert. The wall jet. J. Fluid Mech. 1, 625 (1956).ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    S. J. Cowley and S. H. Davis. Viscous thermocapillary convection at high Marangoni numbers. J. Fluid Mech. 135, 175 (1983).ADSCrossRefMATHGoogle Scholar
  35. [35]
    J. F. Mercier and C. Normand. Buoyant-thermocapillary instabilities of differentially heated liquid layers. Phys. Fluids 8, 1433 (1996).ADSCrossRefMATHGoogle Scholar
  36. [36]
    P. M. Parmentier, V. C. Regnier, and G. Lebon. Buoyant-thermocapillary instabilities in medium-Prandtl-number fluid layers subject to a horizontal temperature gradient. Int. J. Heat Mass Transfer 36, 2417 (1993).CrossRefMATHGoogle Scholar
  37. [37]
    J. Priede and G. Gerbeth. Influence of thermal boundary conditions on the stability of thermocapillary-driven convection at low Prandtl numbers. Phys. Fluids 9, 1621 (1997).ADSCrossRefGoogle Scholar
  38. [38]
    M. K. Smith and S. H. Davis. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132, 119 (1983).ADSCrossRefMATHGoogle Scholar
  39. [39]
    M. K. Smith and S. H. Davis. Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities. J. Fluid Mech. 132, 145 (1983).ADSCrossRefMATHGoogle Scholar
  40. [40]
    M. K. Smith. The nonlinear stability of dynamic thermocapillary liquid layers. J. Fluid Mech. 194, 391 (1988).ADSCrossRefMATHMathSciNetGoogle Scholar
  41. [41]
    S. H. Davis. Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403 (1987).ADSCrossRefMATHGoogle Scholar
  42. [42]
    M. K. Smith. Instability mechanisms in dynamic thermocapillary liquid layers. Phys. Fluids 29, 3182 (1986).ADSCrossRefGoogle Scholar
  43. [43]
    C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zhang. Spectral Methods in Fluid Dynamics. Springer 1988.Google Scholar
  44. [44]
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes ( FORTRAN ). Cambridge University Press 1989.MATHGoogle Scholar
  45. [45]
    M. K. Smith. The instabilities of thermocapillary shear layers. PhD thesis Northwestern University 1982.Google Scholar
  46. [46]
    J. R. A. Pearson. On convection cells induced by surface tension. J. Fluid Mech. 4, 489 (1958).ADSCrossRefMATHGoogle Scholar
  47. [47]
    A. K. Sen and S. H. Davis. Steady thermocapillary flows in two-dimensional slots. J. Fluid Mech. 121, 163 (1982).ADSCrossRefMATHGoogle Scholar
  48. [48]
    C. De Saedeleer, A. Garcimartin, G. Chavepeyer, J. K. Platten, and G. Lebon. The instability of a liquid layer heated from the side when the upper surface is open to the air. Phys. Fluids 8, 670 (1996).ADSCrossRefGoogle Scholar
  49. [49]
    P. Laure, B. Roux, and H. Ben Hadid. Nonlinear study of the flow in a long rectangular cavity subjected to thermocapillary effect. Phys. Fluids A 2, 516 (1990).ADSCrossRefMATHMathSciNetGoogle Scholar
  50. [50]
    D. Villers and J. K. Platten. Coupled buoyancy and Marangoni convection in acetone: Experiments and comparison with numerical simulations. J. Fluid Mech. 234, 487 (1992).ADSCrossRefGoogle Scholar
  51. [51]
    Kelvin, Lord. On a disturbing infinity in Lord Rayleigh’s solution for waves in a plane vortex stream. Nature 23, 45 (1880).CrossRefGoogle Scholar
  52. [52]
    D. Schwabe, U. Möller, J. Schneider, and A. Scharmann. Instabilities of shallow dynamic thermocapillary liquid layers. Phys. Fluids 4, 2368 (1992).ADSCrossRefGoogle Scholar
  53. [53]
    J. Schneider. Strukturen thermokapillarer Konvektion in einem Ringspalt. PhD thesis Universität Giessen 1995.Google Scholar
  54. [54]
    M. Wanschura. Lineare Instabilitäten kapillarer and natürlicher Konvektion in zylindrischen Flüssigkeitsbrücken. PhD thesis ZARM — Universität Bremen 1996.Google Scholar
  55. [55]
    C. A. Jones. Numerical methods for the transition to wavy Taylor vortices. J. Comput. Phys. 61, 321 (1985).ADSCrossRefMATHMathSciNetGoogle Scholar
  56. [56]
    D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press 1990.Google Scholar
  57. [57]
    B. M. Carpenter and G. M. Homsy. High Marangoni number convection in a square cavity: Part II. Phys. Fluids 2, 137 (1990).ADSCrossRefMATHGoogle Scholar
  58. [58]
    G. K. Batchelor. On steady laminar flow with closed streamlines at large Reynolds numbers. J. Fluid Mech. 1, 177 (1956).Google Scholar
  59. [59]
    R. Velten, D. Schwabe, and A. Scharmann. The periodic instability of thermocapillary convection in cylindrical liquid bridges. Phys. Fluids 3, 267 (1991).ADSCrossRefGoogle Scholar
  60. [60]
    F. Preisser, D. Schwabe, and A. Scharmann. Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545 (1983).ADSCrossRefGoogle Scholar
  61. [61]
    M. Wanschura, H. C. Kuhlmann, and H. J. Rath. Linear stability of two-dimensional combined buoyant-thermocapillary flow in cylindrical liquid bridges. Phys. Rev. E 55, 7036 (1997).ADSCrossRefGoogle Scholar
  62. [62]
    M. Levenstam and G. Amberg. Hydrodynamic instabilities of thermocapillary flow in a half-zone. J. Fluid Mech. 297, 357 (1995).ADSCrossRefMATHMathSciNetGoogle Scholar
  63. [63]
    G. P. Neitzel, K.-T. Chang, D. F. Jankowski, and H. D. Mittelmann. Linear-stability theory of thermocapillary convection in a model of the float-zone crystal-growth process. Phys. Fluids 5, 108 (1993).ADSCrossRefMATHGoogle Scholar
  64. [64]
    J.-J. Xu and S. H. Davis. Convective thermocapillary instabilities in liquid bridges. Phys. Fluids 27, 1102 (1984).ADSCrossRefMATHGoogle Scholar
  65. [65]
    S. E. Widnall and Ch.-Y. Tsai. The instability of the thin vortex ring of constant vorticity. Proc. Roy. Soc. London 287, 273 (1977).ADSMATHMathSciNetGoogle Scholar
  66. [66]
    M. Prange. Stabilisierung thermokapillarer Konvektion in zylindrischen Flüssigkeitsbrücken mittels axialer Magnetfelder. Master’s thesis ZARM — Universität Bremen 1997.Google Scholar
  67. [67]
    E. L. Koschmieder. Bénard Cells and Taylor Vortices. Cambridge University Press 1993.Google Scholar
  68. [68]
    M. C. Cross and P. G. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993).ADSCrossRefGoogle Scholar
  69. [69]
    J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields volume 42 of Applied Mathematical Sciences. Springer 1983.Google Scholar
  70. [70]
    R. Rupp, G. Müller, and G. Neumann. Three-dimensional time dependent modelling of the Marangoni convection in a zone melting configuration for GaAs. J. Crystal Growth 97, 34 (1989).ADSCrossRefGoogle Scholar
  71. [71]
    G. Chen, A. Lizée, and B-Roux. Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridges. J. Crystal Growth 180, 638 (1997).ADSCrossRefGoogle Scholar
  72. [72]
    K. A. Muehlner, M. F. Schatz, V. Petrov, W. D. McCormick, J. B. Swift, and H. L. Swinney. Observation of helical traveling-wave convection in a liquid bridge. Phys. Fluids 9, 1850 (1997).ADSCrossRefGoogle Scholar
  73. [73]
    J. D. Crawford and E. Knobloch. Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341 (1991).ADSCrossRefMathSciNetGoogle Scholar
  74. [74]
    J. Leypoldt, H. C. Kuhlmann, and H. J. Rath. Three-dimensional numerical simulation of thermocapillary flows in cylindrical liquid bridges. Submitted to J. Fluid Mech. 1998.Google Scholar
  75. [75]
    R. Savino and R. Monti. Oscillatory Marangoni convection in cylindrical liquid bridges. Phys. Fluids 8, 2906 (1996).ADSCrossRefMATHGoogle Scholar
  76. [76]
    J. Xu and A. Zebib. Oscillatory two-and three-dimensional thermocapillary convection. Submitted to J. Fluid Mech. 1997.Google Scholar
  77. [77]
    H.-Ch. Hsieh. A numerical study of three-dimensional surface tension driven convection with free surface deformations. In Fluid Mechanics Phenomena in Micro-gravity volume AMD 154/FED 142 page 85. ASME 1992.Google Scholar
  78. [78]
    D. D. Joseph and L. Sturges. The free surface on a liquid filled trench heated from its side. J. Fluid Mech. 69, 565 (1975).ADSCrossRefMATHMathSciNetGoogle Scholar
  79. [79]
    A. Zebib, G. M. Homsy, and E. Meiburg. High Marangoni number convection in a square cavity. Phys. Fluids 28, 3467 (1985).ADSCrossRefMATHMathSciNetGoogle Scholar
  80. [80]
    R. V. Birikh. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys. 7, 43 (1966).ADSCrossRefGoogle Scholar
  81. [81]
    M. Strani, R. Piva, and G. Graziani. Thermocapillary ‘convection in a rectangular cavity: Asymptotic theory and numerical simulation. J. Fluid Mech. 130, 347 (1983).ADSCrossRefMATHGoogle Scholar
  82. [82]
    H. Ben Hadid and B. Roux. Thermocapillary convection in long horizontal layers of low-Prandtl-number melts subject to a horizontal temperature gradient. J. Fluid Mech. 221, 77 (1990).Google Scholar
  83. [83]
    H. Schlichting. Grenzschichttheorie. Springer 1968.Google Scholar
  84. [84]
    M. Ohnishi, H. Azuma, and T. Doi. Computer simulation of oscillatory Marangoni flow. Acta Astronautica 26, 685 (1992).ADSCrossRefGoogle Scholar
  85. [85]
    H. Ben Hadid and B. Roux. Buoyancy-and thermocapillary-driven flows in differentially heated cavities for low-Prandtl-number fluids. J. Fluid Mech. 235, 1 (1992).ADSCrossRefMATHGoogle Scholar
  86. [86]
    M. Mundrane and A. Zebib. Oscillatory buoyant thermocapillary flow. Phys. Fluids 6, 3294 (1994).ADSCrossRefMATHGoogle Scholar
  87. [87]
    L. J. Peltier and S. Biringen. Time-dependent thermocapillary convection in a rectangular cavity: Numerical results for a moderate Prandtl number fluid. J. Fluid Mech. 257, 339 (1993).ADSCrossRefMATHGoogle Scholar
  88. [88]
    V. Saß, H. C. Kuhlmann, and H. J. Rath. Investigation of three-dimensional thermocapillary convection in a cubic container by a multi-grid method. Int. J. Heat Mass Transfer 39, 603 (1996).CrossRefMATHGoogle Scholar
  89. [89]
    U. T. Bödewadt. Die Drehströmung über festem Grunde. Z. Angew. Math. Mech. 20, 241 (1940).CrossRefGoogle Scholar
  90. [90]
    P. Gillon and G. M. Homsy. Combined thermocapillary-buoyancy convection in a cavity: An experimental study. Phys. Fluids 8, 2953 (1996).ADSCrossRefGoogle Scholar
  91. [91]
    D. Schwabe and J. Metzger. Coupling and separation of buoyant thermocapillary convection. J. Crystal Growth 97, 23 (1989).ADSCrossRefGoogle Scholar
  92. [92]
    F. Daviaud and J. M. Vince. Travelling waves in a fluid layer subjected to a horizontal temperature gradient. Phys. Rev. E 48, 4432 (1993).ADSGoogle Scholar
  93. [93]
    M. Mundrane and A. Zebib. Two-and three-dimensional buoyant thermocapillary convection. Phys. Fluids 5, 810 (1993).ADSCrossRefMATHGoogle Scholar
  94. [94]
    H. C. Kuhlmann, M. Wanschura, and H. J. Rath. Flow in two-sided lid-driven cavities: Non-uniqueness, instabilities, and cellular structures. J. Fluid Mech. 336, 267 (1997).ADSCrossRefMATHMathSciNetGoogle Scholar
  95. [95]
    H. C. Kuhlmann, M. Wanschura, and H. J. Rath. Elliptic instability in two-sided lid-driven cavity flow. Eur. J. Mech., B/Fluids (to appear) (1998).Google Scholar
  96. [96]
    B. J. Bayly. Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 2160 (1986).ADSCrossRefMathSciNetGoogle Scholar
  97. [97]
    R. T. Pierrehumbert. Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 2157 (1986).ADSCrossRefGoogle Scholar
  98. [98]
    F. Waleffe. On the three-dimensional instability of strained vortices. Phys. Fluids 2, 76 (1990).ADSCrossRefMATHMathSciNetGoogle Scholar
  99. [99]
    M. G. Braunsfurth and G. M. Homsy. Combined thermocapillary-buoyancy convection in a cavity. Part II. An experimental study. Phys. Fluids 9, 1277 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • H. C. Kuhlmann
    • 1
  1. 1.University of BremenBremenGermany

Personalised recommendations