Waves on Interfaces

  • S. Fauve
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 391)


I review basic results about waves at the interface between a horizontal fluid layer and air at atmospheric pressure or at the interface between two non-miscible fluids. The restoring mechanisms are mostly gravity and surface tension but coupling with relative fluid motion or with an electric or a magnetic field will also be considered. The effect of dissipation on the dispersion relation is discussed. At the nonlinear level, perturbative methods are described in the case of long wavelength approximations or slowly varying wave packets. Finally, parametric amplification of surface waves on a vertically vibrated fluid interface, the Faraday instability, is considered. These lecture notes should not be considered as a review article on the subject. In particular, I have not tried to give a complete bibliography and have only quoted the material used to prepare the notes. Many aspects of the three first parts can be found in well-known books: Non dissipative linear surface waves are presented in details in “Theoretical mechanics of particles and continua” by Fetter and Walecka [1]. A simple discussion of various dissipative effects, both in the bulk and boundary layers can be found in Landau and Lifshitz, “Fluid Mechanics” [2]. Nonlinear aspects are discussed in details by Whitham, “Linear and Nonlinear Waves” [3] and Newell, “Solitons” [4].


Dispersion Relation Surface Wave Gravity Wave Capillary Wave Amplitude Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fetter, A. L. and J. D. Walecka: Theoretical mechanics of particles and continua, chap. 10, Mac Graw Hill, 1980.Google Scholar
  2. [2]
    Landau, L. D. and E. M. Lifshitz: Fluid Mechanics, Pergamon Press, 1959.Google Scholar
  3. [3]
    Whitham, G. B.: Linear and nonlinear waves, Wiley, 1974.Google Scholar
  4. [4]
    Newell, A. C.: Solitons in mathematics and physics, SIAM, 1985.Google Scholar
  5. [5]
    Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, Clarendon Press, 1961.Google Scholar
  6. [6]
    Benjamin, T. B. and J. C. Scott: Gravity-capillary waves with edge constraints, J. Fluid Mech. 92 (1970), 241–267.ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    Graham-Eagle, J.: A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints, Math. Proc. Camb. Phil. Soc. 94 (1983), 553–564.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Weissman, M. A.: Nonlinear wave packets in the Kelvin-Helmholtz instability, Phil. Trans. R. Soc. Lond. 290 (1979), 639–681.ADSCrossRefMATHGoogle Scholar
  9. [9]
    Melcher,: Field coupled surface waves, MIT Press, Cambridge 1963.Google Scholar
  10. [10]
    Miles, J.: Surface-wave damping in closed basins, Proc. Roy. Soc. Lond. A 297 (1967), 459–475.ADSCrossRefGoogle Scholar
  11. [11]
    Benjamin, T. B. and J. E. Feir: The disintegration of wave trains on deep water, J. Fluid Mech. 27 (1967), 417–430.ADSCrossRefMATHGoogle Scholar
  12. [12]
    Lake, B. M., M. C. Yuen, M. Rungaldier and W. E. Ferguson: Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train, J. Fluid Mech. 83 (1977), 49–74.ADSCrossRefGoogle Scholar
  13. [13]
    Stuart, J. T. and R. C. DiPrima: The Eckhaus and Benjamin-Feir resonance mechanisms, Proc. Roy. Soc. Lond. A 362 (1978), 27–41.ADSCrossRefGoogle Scholar
  14. [14]
    Benney, D. J. and G. J. Roskes: Wave instabilities, Stud. Applied Math. (USA), 48 (1969), 337–385.Google Scholar
  15. [15]
    Hasimoto, H. and H. Ono: Nonlinear modulation of gravity waves, J. Phy. Soc. Japan, 33 (1972), 805–811.ADSCrossRefGoogle Scholar
  16. [16]
    Davey, A. and K. Stewartson: On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A, 338 (1974), 101–110.ADSCrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    Davey, A., L. M. Hocking and K. Stewartson: On the nonlinear evolution of three-dimensional disturbances in plane Poiseuille flow, J. Fluid Mech. 63 (1974), 529–536.ADSCrossRefMATHGoogle Scholar
  18. [18]
    Zippelius, A. and E. Siggia: Stability of finite amplitude convection, Phys. Fluids 26 (1982), 2905–2915ADSCrossRefGoogle Scholar
  19. [19]
    Coullet, P. and S. Fauve: Propagative phase dynamics for systems with Galilean invariance, Phys. Rev. Lett. 55 (1985), 2857–2860.ADSCrossRefGoogle Scholar
  20. [20]
    Faraday, M.: On the form and states of fluids on vibrating elastic surfaces, Phil. Trans. R. Soc. Lond. 52 (1831), 319–340.Google Scholar
  21. [21]
    Melde, F.: Uber erregung stehender Wellen eines fadenformigen Körpers, Ann. Phys. Chem., Ser. 2, 109 (1859) 193–215.Google Scholar
  22. [22]
    Fauve, S.: Parametric instabilities, in: Dynamics of nonlinear and disordered systems (Ed. G. Martinez-Mekler and T. H. Seligman), World Scientific, 1995, Chap. 3.Google Scholar
  23. [23]
    Benjamin, T. B. and F. Ursell: The stability of the plane free surface of a liquid in vertical periodic motion, Proc. Roy. Soc. Lond. A 225 (1954), 505–515.ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    Miles, J.: Nonlinear Faraday resonance, J. Fluid Mech. 146 (1984), 285–302.ADSCrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    Nam Hong, U.: A new approach to parametric excitation of stationary surface waves in a viscous liquid, Bull. Russian Acad. Sci., Phys./Supplement 57 (1993) 131–135.Google Scholar
  26. [26]
    Kumar, K.: Linear theory of Faraday instability in viscous liquids, Proc. Roy. Soc. Lond. A 452 (1996) 1113–1126.ADSCrossRefMATHGoogle Scholar
  27. [27]
    Müller, H. W, H. Wittmer, C. Wagner, J. Albers and K. Knorr: Analytic stability theory for Faraday waves and the observation fo the harmonic surface response, Phys. Rev. Lett. 78 (1997), 2357–2360.ADSCrossRefGoogle Scholar
  28. [28]
    Lioubashevski, O., J. Fineberg and L. S. Tuckerman: Scaling of the transition to parametrically driven surface waves in highly dissipative systems, Phys. Rev. E 55 (1997), 3832–3835.Google Scholar
  29. [29]
    Cerda, E. A. and E. L. Tirapegui: Faraday instability in viscous fluids, (preprint 1998 ).Google Scholar
  30. [30]
    Edwards, W.S. and S. Fauve: Patterns and quasipatterns in the Faraday experiment, J. Fluid Mech. 278 (1994), 123–148.ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    Wolf, G. H.: Dynamic stabilization of the interchange instability of a liquid-gas interface, Phys. Rev. Lett. 24 (1970), 444–446.ADSCrossRefGoogle Scholar
  32. [32]
    Ezerskii, A. B., M. I. Rabinovich, V. P. Reutov and I. M. Starobinets: Spatiotemporal chaos in the parametric excitation of a capillary ripple, Sov. Phys. JETP 64 (1986), 1228–1236.Google Scholar
  33. [33]
    Tufillaro, N., R. Ramshankar and J. P. Gollub: Order disorder transition in capillary ripples, Phys. Rev. Lett. 62 (1989) 422–425.ADSCrossRefGoogle Scholar
  34. [34]
    Christiansen, B., P. Alstrom and M. T. Levinsen: Ordered capillary waves states: quasicrystals, hexagons and radial waves, Phys. Rev. Lett. 68 (1992), 2157–2160.ADSCrossRefGoogle Scholar
  35. [35]
    Ciliberto, S., S. Douady and S. Fauve: Investigating space-time chaos in Faraday instability by means of the fluctuations of the driving acceleration, Europhysics Lett. 15 (1991) 23–28.ADSCrossRefGoogle Scholar
  36. [36]
    Fauve, S. K. Kumar, C. Laroche, D. Beysens and Y. Garrabos: Parametric instability of a liquid-vapor interface close to the critical point, Phys. Rev. Lett. 68 (1992) 3160–3163.ADSCrossRefGoogle Scholar
  37. [37]
    Edwards, W. S, S. Fauve, K. Kumar and C. Laroche: Pattern formation in parametrically excited surface waves, in: Turbulence in spatially extended systems, (Ed. R. Benzi, C. Basdevant and S. Ciliberto ), Nova Science Publishers, 1993, 259–273.Google Scholar
  38. [38]
    Chen P. and J. Vinais: Amplitude equations and pattern selection in Faraday waves, (preprint 1998 ).Google Scholar
  39. [39]
    Riecke, H.: Stable wavenumber kinks in parametrically excited surface waves, Europhysics Lett. 11 (1990), 213–218.ADSCrossRefGoogle Scholar
  40. [40]
    Douady, S., S. Fauve and O. Thual: Oscillatory phase modulation of parametrically forced surface waves, Europhysics Lett. 10 (1989), 309–315.ADSCrossRefGoogle Scholar
  41. [41]
    Fauve, S., S. Douady and O. Thual: Drift instabilites of cellular patterns, J. Phys. France II 1 (1991), 311–322.CrossRefGoogle Scholar
  42. [42]
    Fauve, S.: Pattern forming instabilities, in: Hydrodynamics and nonlinear instabilities (Ed. C. Godrèche and P. Manneville), Cambridge University Press, 1998, Chap. 4.Google Scholar
  43. [43]
    Douady, S. and S. Fauve: Pattern selection in Faraday instability, Europhysics Lett. 6 (1988), 221–226.ADSCrossRefGoogle Scholar
  44. [44]
    Milner, S. T.: Square patern and secondary instabilities in driven capillary waves, J. Fluid Mech. 225 (1991) 81–100.ADSCrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    Edwards, W.S. and S. Fauve: Parametrically excited quasicrystalline surface waves, Phys. Rev. E 47 (1993), 788–791.Google Scholar
  46. [46]
    Kumar, K. and K. M. S. Bajaj, Competing patterns in the Faraday experiment, Phys. Rev. E 52 (1995), 4606–4609.Google Scholar
  47. [47]
    Binks, D. and W. van de Water: Nonlinear pattern formation of Faraday waves, Phys. Rev. Lett. 78 (1997) 4043–4046.ADSCrossRefGoogle Scholar
  48. [48]
    Edwards, W.S. and S. Fauve: Structure quasicristalline engendrée par instabilité paramétrique, C. R. Acad. Sci. Paris, 315-II (1992), 417–420.Google Scholar
  49. [49]
    Malomed, B. A., A. A. Nepomnyashchii and M. I. Tribelskii: Two-dimensional quasiperiodic structures in non equilibrium systems, Sov. Phys. JETP 69 (1989), 388–396.Google Scholar
  50. [50]
    Newell, A. C. and Y. Pomeau: Turbulent crystals in macroscopic systems, J. Phys. A 26 (1993), 429–434.ADSCrossRefGoogle Scholar
  51. [51]
    Miles, J.: Faraday waves: rolls versus squares, J. Fluid Mech. 269 (1994), 353–371.ADSCrossRefMATHMathSciNetGoogle Scholar
  52. [52]
    P. L. Hansen and P. Alstrom: Perturbation theory of parametrically driven capillary waves at low viscosity, J. Fluid Mech. 351 (1997), 301–344.ADSCrossRefMATHMathSciNetGoogle Scholar
  53. [53]
    Besson, T., W. S. Edwards and L. S. Tuckerman: Two-frequency parametric excitation of surface waves, Phys. Rev. E 54 (1996), 507–513.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • S. Fauve
    • 1
  1. 1.Ecole Normale SupérieureParisFrance

Personalised recommendations