Advertisement

Experiments in Chaotic Dynamics

Part of the International Centre for Mechanical Sciences book series (CISM, volume 298)

Abstract

The discovery of deterministic chaotic vibrations in nonlinear dynamical systems has led to new mathematical ideas and analytical techniques in nonlinear dynamics. Along with these new ideas has come a host of new experimental tools to analyze vibrations in physical systems including Poincaré maps, bifurcation diagrams, chaos criteria diagrams, Lyapunov exponents and fractal dimensions. Some of these new experimental methods are reviewed in these notes, particularly as they apply to nonlinear mechanical systems.

Keywords

Fractal Dimension Lyapunov Exponent Chaotic Dynamics Phase Plane Periodic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergé, P., Dubois, M., Manneville, P., and Pomeau, P. (1980), “Intermittancy in Rayleigh-Benard convection”, Le J. de Physique-Letters, 41(15) 1, Aug., L341 - L345.Google Scholar
  2. Bergé, P., Pomeau, Y., Vidal, Ch. (1984), L’Ordre dans le Chaos, Hermann, Paris.MATHGoogle Scholar
  3. Brandstater, A., Swift, J., Swinney, H. L., Wold, A., Farmer, J. O., Jen, E., Crutchfield, J. P. (1983), “Low-dimensional chaos in a hydrodynamics system”, Phys. Rev. Lett., 51 (6), 1442–1445.Google Scholar
  4. Bryant, P. and Jeffries, C. (1984), “Bifurcations of a forced magnetic oscillator near points of resonance”, Phys. Rev. Lett., 53 (3), p. 250–253.MathSciNetCrossRefGoogle Scholar
  5. Bucko, M. R., Douglass, D. H., Frutchy, H. H. (1984), “Bounded regions of chaotic behavior in the control parameter space of a driven non-linear resonator”, Phys. Leu. 104 (8), 388–390.CrossRefGoogle Scholar
  6. Cvitanovic, Predrag (1984), University in Chaos, Heyden and Son, Inc., Phila., PA.Google Scholar
  7. Dowell, E. H. (1982) “Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system”, J. Sound and Vibration, 85 (3), 333–344.MathSciNetCrossRefGoogle Scholar
  8. Eckmann, J. P. (1981), “Roads to turbulence in dissipative dynamical system”, Rev. Mod. Physics, 53(4) part 1, Oct. 1981, 643–654.MathSciNetCrossRefGoogle Scholar
  9. Feigenbaum, M. J. (1978), “Qualitative universality for a class of nonlinear transformation”, J. of Statistical Phys. 19 (1), 25–52.MathSciNetCrossRefMATHGoogle Scholar
  10. Gollub, J. P., Benson, S. V. (1980), “Many routes to turbulent convection”, J. Fluid Mech., 100 (3), 449–470.CrossRefGoogle Scholar
  11. Grassberger, P., and Proccacia, I. (1983), “Characterization of strange attractors”, Phys. Rev. Lett., 50, 346–349.Google Scholar
  12. Grebogi, C., Ott, E., and Yorke, J. A. (1983), “Crises, sudden changes in chaotic attractors and transient chaos”, Physica 7D, 191–200.MathSciNetGoogle Scholar
  13. Grebogi, C., Ott, E., and Yorke, J. A. (1983), “Fractal basin boundaries, long lived chaotic transients and unstable-unstable pair bifurcation”, Phys. Rev. Lett., 50 (13), 935–938.MathSciNetCrossRefGoogle Scholar
  14. Guckenheimer, J., and Holmes, P. J. (1983), Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag, New York.CrossRefGoogle Scholar
  15. Hao, B.-L. (1984), Chaos, World Scientific Publ., Singapore.MATHGoogle Scholar
  16. Heileman, R. H. G. (1980), “Self-generated chaotic behavior in nonlinear mechanics”, in Fundamental Problems in Statistical Mechanics, 5, 165–233.Google Scholar
  17. Hendriks, F. (1983), “Bounce and chaotic motion in print hammers”, IBM J. of Research and Development, 27 (3), 273–280.CrossRefGoogle Scholar
  18. Henon, M. (1976), “A two-dimensional map with a strange attractor”, Commun. Math. Phys., 50, 69.Google Scholar
  19. Holmes, P. J. (1981), Editor, New Approaches to Nonlinear Problems in Dynamics, published by SIAM, Phila., PA.Google Scholar
  20. Holmes, P. (1984), “Bifurcation sequences in horseshoe maps: infinitely many routes to chaos”, Phys. Lett., 104A (6,7), 299–302.MathSciNetCrossRefGoogle Scholar
  21. Holmes, P. J., Moon, F. D. (1983), “Strange attractors and chaos in nonlinear mechanics”, J. Applied Mechanics 50, 1021–1032.MathSciNetCrossRefGoogle Scholar
  22. Holmes, P. J. (1979), “A nonlinear oscillator with a strange attractor,” Phil. Trans. Roy. Soc. A, 292, pp. 419–448.CrossRefMATHGoogle Scholar
  23. Holmes, P. J. (1982), “The dynamics of repeated impacts with a sinusoidally vibrating table,” J. Sound Fib., 84, pp. 173–189.MATHGoogle Scholar
  24. Iooss, G., and Joseph, D. D. (1980), Elementary Stability and Bifurcation Theory, Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  25. Kadanoff, L. P. (1983), “Roads to chaos”, Physics Today (Dec.), 46–53.Google Scholar
  26. Lee, C.-K., Moon, F. C. (1986), “An optical technique for measuring fractal dimensions of planar Poincaré maps”, Phys. Lett., 114A (5), 222–226.MathSciNetCrossRefGoogle Scholar
  27. Leven, P. W., and Koch, B. P. (1981), “Chaotic behavior of a parametrically excited damped pendulum”, Phys. Lett. 86A(2), 2 Nov., 71–74.Google Scholar
  28. Lichtenberg, A. J., and Lieberman, M. A. (1983), Regular and Stochastic Motion, Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  29. Linsay, P. S. (1981), Period doubling and chaotic behavior in a driven, anharmonic oscillator,“ Phys. Rev. Lett., 47, No. 19, 1349–1352.CrossRefGoogle Scholar
  30. Lorenz, E. N. (1963), “Deterministic non-periodic flow”, J. Atmospheric Sciences, 20, pp. 130–141.CrossRefGoogle Scholar
  31. Malraison, G., Atten, P., Bergé, P., and Dubois, M. (1983), “Dimension of strange attractors: an experimental determination of the chaotic regime of two convective systems”, J. Physique-Lettres 44, 897–902.CrossRefGoogle Scholar
  32. Mandelbrot, B. B. (1977), Fractals, W. H. Freeman & Co., San Francisco, CA.Google Scholar
  33. Manneville, P., Pomeau, Y. (1980), “Different ways to turbulence in dissipative dynamical systems”, Physica 1D, 219–226.MathSciNetGoogle Scholar
  34. Matsumoto, T., Chua, L. O., Komuro, M (1985), “The double scroll”, IEEE Trans. Circuits and Systems, CAS-32, No. 8, August 1985, 798–818.MathSciNetGoogle Scholar
  35. McDonald, S. W., Grebogi, C., Ott, E., and Yorke, J. A. (1985), “Fractal basin boundaries”, Physica 17D, 125–153.MathSciNetMATHGoogle Scholar
  36. Miles, J. (1984), “Resonant motion of spherical pendulum”, Physica 11D, 309–323.MathSciNetMATHGoogle Scholar
  37. Minorsky, N. (1962), Nonlinear Oscillations, D. Van Nostrand Co. Inc., Princeton, NJ.Google Scholar
  38. Moon, F. C., Cusumano, J., Holmes, P. J. (1986), “Evidence for homoclinic orbits as a precursor to chaos in a magnetic pendulum”, Physica D.Google Scholar
  39. Moon, F. C. (1987), Chaotic Vibrations, J. Wiley and Sons, NY.Google Scholar
  40. Moon, F. C., Holmes, W. T. (1985), “Double Poincaré sections of a quasi-periodically forced, chaotic attractor”, Phys. Lett., 111A (4), 157–160.MathSciNetCrossRefGoogle Scholar
  41. Moon, F. C., Holmes, W. T. (1985), “The fractal dimension of the two-well potential strange attractor”, Physica 17D, 99–108.MathSciNetMATHGoogle Scholar
  42. Moon, F. C., Li, G.-X. (1985), “Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential”, Phys. Rev. Lett., 55 (14), 1439–1442.MathSciNetCrossRefGoogle Scholar
  43. Moon, F. C., and Holmes, P. J. (1979), “A magnetoelastic strange attractor,” J. Sound Vib., Vol. 65, No. 2, pp. 275–296CrossRefMATHGoogle Scholar
  44. Moon, F. C., and Holmes, P. J., A Magnetoelastic strange attractor,“ j. Sound Vib., 69, No. 2, p. 339.Google Scholar
  45. Moon, F. C. (1980), “Experiments on chaotic motions of a forced nonlinear oscillator: Strange attractors,” ASME Journal of Applied Mechanics, 47, pp. 638–44.CrossRefGoogle Scholar
  46. Moon, F. C. (1984), Fractal boundary for chaos in a two-state mechanical oscillator, Phys. Rev. Lett., 53, No. 60, pp. 962–964.CrossRefGoogle Scholar
  47. Newhouse, S., Ruelle, D., and Takens, F. (1978), “Occurrence of strange axiom A attractors near quasi periodic flows on Te’, m ≥ 3, Commun. Math. Phys., 64, 35–40.Google Scholar
  48. Nayfeh, A. H., and Mook, D. T. (1979), Nonlinear Oscillations, J. Wiley and Sons.Google Scholar
  49. Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S. (1980), “Geometry from a time series”, Phys. Rev. Lett., 45, 712.Google Scholar
  50. Pomeau, Y., Mannville, P. (1980), “Intermittent transition to turbulence in dissipative dynamical systems”, Commun. Math. Phys., 74, 189–197.Google Scholar
  51. Rollins, R. W., and Hunt, E. R. (1982), “Exactly solvable model of a physical system exhibiting universal chaotic behavior”, Phys. Rev. Lett. 49 (18), 1295–1298.MathSciNetCrossRefGoogle Scholar
  52. Schuster, H. G. (1984), Deterministic Chaos, Physic-Verlag GmbH, Weinheim (FRG).MATHGoogle Scholar
  53. Shaw, S., Holmes, P. J. (1983), “A periodically forced piecewise linear oscillator”, L Sound and Vibration, 90 (1), 129–155.MathSciNetCrossRefMATHGoogle Scholar
  54. Swinney, H. L. (1983), “Observations of order and chaos in nonlinear systems,” in Order and Chaos, Campbell and Rose, Eds., North-Holland, Amsterdam, 3–15.Google Scholar
  55. Ueda, Y. (1979), “Randomly transitional phenomena in the system governed by Duffing’s equation,” J. Statistical Physics, 20, 181–196.MathSciNetCrossRefGoogle Scholar
  56. Wolf, A. (1984), “Quantifying chaos with Lyapunov exponents”, Nonlinear Science: Theory and Application.Google Scholar
  57. Wolf, A., Swift, J. B., Swinney, H. L., Vasano, J. A. (1985), “Determining Lyapunov exponents from a time series”, Physica 16D, 285–317.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • F. Moon
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations