Advertisement

Navier-Stokes Numerical Algorithms for Free-Surface Flow Computations: An Overview

  • Andrea Prosperetti
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 456)

Abstract

A survey of fixed-grid methods for the calculation of free-surface flows is presented. These methods are based on a single-fluid formulation that is described first. Then concise overviews of the volume-of-fluid, level-set, and front-tracking algorithms are given.

Keywords

Direct Numerical Simulation Momentum Balance Equation Fixed Grid Incompressible Fluid Flow Constrain Interpolation Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.M., McFadden, G.B. & Wheeler, A.A., 1998, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech. 30, 139–165.MathSciNetCrossRefGoogle Scholar
  2. Athanasopoulos, I., Makrakis, G. & Rodrigues, J.F. editors, 1999, Free Boundary Problems: Theory and Applications, CRC Press.MATHGoogle Scholar
  3. Bell, J.B., Colella, P. & Glaz, H.M., 1989, A second-order projection method for the incompressible Navier-Stokes equations, J. Comp. Phys., 85, 257–283.MathSciNetCrossRefMATHGoogle Scholar
  4. Brackbill, J.U., Kothe, D.B., & Zemach, C., 1992, A continuum method for modeling surface tension, J. Comp. Phys., 100, 335–354.MathSciNetCrossRefMATHGoogle Scholar
  5. Bussmann, M., Mostaghimi, J., & Chandra, S., 1999, On a three-dimensional volume tracking model of droplet impact, Phys. Fluids, 11, 1406–1417.CrossRefMATHGoogle Scholar
  6. Chang, Y.C., Hou, T.Y., Merriman, B., & Osher, S., 1996, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comp. Phys., 124, 449–164.MathSciNetCrossRefMATHGoogle Scholar
  7. Chen, S. & Doolen, G.D., 1998, Lattice Boltzmann methods for fluid flows, Annu. Rev. Fluid Mech. 30, 329–364.MathSciNetCrossRefGoogle Scholar
  8. Chorin, A.J., 1985, Curvature and solidification, J. Comp. Phys., 57, 472.MathSciNetCrossRefMATHGoogle Scholar
  9. Duraiswami, R. & Prosperetti, A., 1992, Orthogonal mapping in two dimensions, J. Comput. Phys. 98, 254–268.MathSciNetCrossRefMATHGoogle Scholar
  10. Esmaeeli, A. & Tryggvason, G., 1998, Direct numerical simulation of bubbly flows. Part I. Low Reynolds number arrays, J. Fluid Mech., 377, 313–345.CrossRefMATHGoogle Scholar
  11. Esmaeeli, A. & Tryggvason, G., 1999, Direct numerical simulation of bubbly flows. Part II. Moderate Reynolds number arrays, J. Fluid Mech., 385, 325–358.CrossRefMATHGoogle Scholar
  12. Glimm, J., Marchesin, D. & McBryan, O., 1981, A numerical method for two-phase flow with an unstable interface, J. Comp. Phys. 39, 179–200.MathSciNetCrossRefMATHGoogle Scholar
  13. Glimm, J., Grove, J.W., Li, X.L., Young, R., Zhang, Q. & Zeng, Y., 1998, Three-dimensional front tracking, J. Sci. Comp. 19, 703–727.MATHGoogle Scholar
  14. He, X.Y., Chen, S. & Zhang, R.Y., 1999, A lattice Boltzmann scheme for incompressible multiphase flow and its application to the simulation of Rayleigh-Taylor instability, J. Comp. Phys. 152, 642–663.MathSciNetCrossRefMATHGoogle Scholar
  15. Hirt, C.W. & Nichols, B.D., 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys., 39, 201–225.CrossRefMATHGoogle Scholar
  16. Jacqmin, D., 1999, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comp. Phys. 155, 96–127.MathSciNetCrossRefMATHGoogle Scholar
  17. Jacqmin, D., 2000, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech. 402, 57–88.MathSciNetCrossRefMATHGoogle Scholar
  18. Juric, D. & Tryggvason, G., 1996, A front tracking method for dendritic solidification, J. Comput. Phys., 123, 127–148.MathSciNetCrossRefMATHGoogle Scholar
  19. Juric, D. & Tryggvason, G., 1998, Computation of boiling flows, Int J. Multiphase Flow, 24, 387–410.CrossRefMATHGoogle Scholar
  20. Kang, I.S. & Leal, L.G., 1987, Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number. I. Finite-difference scheme and its application to the deformation of a bubble in a uniaxial straining flow, Phys. Fluids 30, 1929–1940.CrossRefMATHGoogle Scholar
  21. Kemmer, N., 1977, Vector Analysis: A Physicist’s Guide to the Mathematics of Fields in Three Dimensions, Cambridge U.R., Cambridge, U.K.CrossRefMATHGoogle Scholar
  22. Kothe, D.B. & Mjolsness, R.C., 1992, RIPPLE: A new method for incompressible flows with free surfaces, AIAA J., 30, 2694–2700.CrossRefMATHGoogle Scholar
  23. Landau, L. & Lifshitz, E.M., 1959, Statistical Physics, Pergamon Press.Google Scholar
  24. Liao, G., Liu, F., de la Pena, G.C., Peng, D. & Osher, S. 2000, Level-set-based deformation methods for adaptive grids, J. Comp. Phys. 159, 103–122.CrossRefMATHGoogle Scholar
  25. Lowengrub, J.S. & Truskinovsky, L., 1998, Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A454, 2617–2654.MathSciNetCrossRefMATHGoogle Scholar
  26. Nobari, M.R.H., Jan, Y.J., & Tryggvason, G., 1996, Head-on collision of drops — A numerical investigation, Phys. Fluids, 8, 29–42.CrossRefMATHGoogle Scholar
  27. Nobari, M.R.H. & Tryggvason, G., 1996, Numerical simulations of three-dimensional drop collisions, AIAA J., 34, 750–755.CrossRefGoogle Scholar
  28. Poo, J.Y. & Ashgriz, N., 1989, A computational method for determining curvatures, J. Comp. Phys., 84, 483.CrossRefMATHGoogle Scholar
  29. Popinet, S. & Zaleski, S., 1999, A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. Meth. Fluids 30, 775–793.CrossRefMATHGoogle Scholar
  30. Puckett, E.G., Almgren, A.S., Bell, J.B., Marcus, D.L., & Rider, W.J., 1997, A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comp. Phys., 130, 269–282.CrossRefMATHGoogle Scholar
  31. Rider, W.J. & Kothe, D.B., 1998, Reconstructing volume tracking, J. Comp. Phys., 141, 112–152.MathSciNetCrossRefMATHGoogle Scholar
  32. Rudman, M., 1997, Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids, 24, 671–691.MathSciNetCrossRefMATHGoogle Scholar
  33. Ryskin, G. & Leal, L.G., 1984, Numerical solution of free-boundary problems in fluid mechanics. Part I. The finite-difference technique, J. Fluid Mech. 148, 1–17.CrossRefMATHGoogle Scholar
  34. Scardovelli, R. & Zaleski, S., 1999, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Dyn., 31, 567–603.MathSciNetCrossRefGoogle Scholar
  35. Sethian, J.A., 1996, Level Set Methods, Cambridge U.P., Cambridge, UK.MATHGoogle Scholar
  36. Son, G. & Dhir, V.K., 1998, Numerical simulation of film boiling near critical pressures with a level set method, J. Heat Transfer, 120, 183–192.CrossRefGoogle Scholar
  37. Sussman, M. & Fatemi, E., 1999, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput., 20, 1165–1191.MathSciNetCrossRefMATHGoogle Scholar
  38. Sussman, M. & Smereka, P., 1997, Axisymmetric free boundary problems, J. Fluid Mech., 341, 269–294.MathSciNetCrossRefMATHGoogle Scholar
  39. Sussman, M., Smereka, P., & Osher, S., 1994, A level set approach for computing solutions to incompressible two-phase flow, J. Comp. Phys., 114, 146–159.CrossRefMATHGoogle Scholar
  40. Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H. & Welcome, M.L., 1999, An adaptive level set approach for incompressible two-phase flows, J. Comp. Phys., 148, 81–124.MathSciNetCrossRefMATHGoogle Scholar
  41. Takagi, S., Prosperetti, A. & Matsumoto, Y., 1994, Drag coefficient of a gas bubble in an axisymmetric shear flow, Phys. Fluids 6, 3186–3188.CrossRefMATHGoogle Scholar
  42. Tezduyar, T., Aliabadi, S. & Behr, M., 1998, Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces, Comp. Meth. Appl. Mech. Eng. 155, 235–248.CrossRefMATHGoogle Scholar
  43. Thompson, J.F., Warsi, Z.V.A. & Wayne, C.W., 1985 Numerical Grid Generation: Foundations and Applications, North-Holland.MATHGoogle Scholar
  44. Thompson, J.F., Soni, B. & Weatherill, N., 1998, Handbook of Grid Generation, CRC Press.Google Scholar
  45. Tsai, W.T. & Yue, D.K.P., 1996, Computation of nonlinear free-surface flows, Annu. Rev. Fluid Mech. 28, 249–278.MathSciNetCrossRefGoogle Scholar
  46. Unverdi, S.O. & Tryggvason, G., 1992, A front-tracking method for viscous, incompressible multi-fluid flows, J. Comp. Phys., 100, 25–37.CrossRefMATHGoogle Scholar
  47. Williams, M.W., Kothe, D.B., & Puckett, E.G., 1998, Accuracy and convergence of continuum surface tension models, available from http://math.math.ucdavis.edu /egp/.Google Scholar
  48. Wren, G.P., Ray, S.E., Aliabadi, S.K. & Tezduyar, T.E., 1997, Simulation of flow problems with moving mechanical components, fluid-structure interactions and two-fluid interfaces, Int. J. Numer. Methods Fluids 24, 1433–1448.CrossRefMATHGoogle Scholar
  49. Yabe, T., Hoshino, H. & Tsuchiya, T., 1991, Two- and three-dimensional behavior of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, Phys. Rev. A44, 2756–2758.CrossRefGoogle Scholar
  50. Yabe, T., 1998, A numerical procedure CIP to solve all phases of matter together, in Six-teenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics Vol. 575, C.H. Bruneau editor, Springer, pp. 439–457.Google Scholar
  51. Zaleski, S., Li, J., Succi, S., Scardovelli, R., & Zanetti, G., 1995, Direct numerical simulation of flows with interfaces, in Proceedings of the 2nd International Conference on Multiphase Flow, Serizawa, A., Fukano, T., & Bataille, J., eds., Kyoto, ICMF95, PT2–1 -PT2–12.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Andrea Prosperetti
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Faculty of Applied Physics and Twente Institute of MechanicsUniversity of TwenteEnschedeThe Netherlands
  3. 3.BurgerscentrumThe Netherlands

Personalised recommendations