Boundary Integral Methods

  • Andrea Prosperetti
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 456)


In the numerical simulation of free-surface flows a considerable simplification is possible in the opposite limits of very weak or very strong viscous effects. This chapter focuses for the most part on the former case and provides an overview of several boundary integral methods that have been developed to handle it. The last section gives a brief description of the basis for boundary integral methods suitable for the Stokes equations.


Fluid Domain Vortex Sheet Vortex Method Fredholm Equation Boundary Integral Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M. & Stegun, I.A., 1964, Handbook of Mathematical Functions, National Bureau of Standards, Washington.MATHGoogle Scholar
  2. Baker, G.R., Meiron, D.I., & Orszag, S.A., 1982, Generalized vortex methods for free-surface flow problems, J. Fluid Mech., 123, 477–501.MathSciNetCrossRefMATHGoogle Scholar
  3. Baker, G.R., Meiron, D.I., & Orszag, S.A., 1984, Boundary integral methods for axisymmetric and three-dimensional Rayleigh-Taylor instability problems, Physica D, 12, 19–31.MathSciNetCrossRefMATHGoogle Scholar
  4. Batchelor, G.K., 1967, An Introduction to Fluid Mechanics, Cambridge U.P., Cambridge.MATHGoogle Scholar
  5. Birkhoff, G. & Zarantonello, E.H., 1957, Jets, Wakes, and Cavities, Academic.MATHGoogle Scholar
  6. Bonnet, M., 1995, Boundary Integral Equation Methods for Solids and Fluids, Wiley, Cichester.Google Scholar
  7. Boulton-Stone, J.M. & Blake, J.R., 1993, Gas bubbles bursting at a free surface, J. Fluid Mech., 254, 437–466.CrossRefMATHGoogle Scholar
  8. Coulliette, C. & Pozrikidis, C., 1998, Motion of an array of drops through a cylindrical tube, J. Fluid Mech., 358, 1–28.MathSciNetCrossRefMATHGoogle Scholar
  9. Dommermuth, D.G. & Yue, D.K.P., 1987, Numerical simulation of nonlinear axisymmetric flows with a free surface, J. Fluid Mech., 178, 195–219.CrossRefMATHGoogle Scholar
  10. Gilbarg, D., Jets and cavities, in Encyclopedia of Physics, Flügge, S. & Truesdell, C., eds., Springer, Berlin, 1960, 311–445.Google Scholar
  11. Guerri, L., Lucca, G., & Prosperetti, A., 1982, A numerical method for the dynamics of non-spherical cavitation bubbles, in Proceedings of the Second International Colloquium on Drops and Bubbles, Le Croissette, D.H., ed., Pasadena, Jet Propulsion Laboratory, 175–181.Google Scholar
  12. Happel, J. & Brenner, H., 1965, Low-Reynolds Number Hydrodynamics, Prentice-Hall, 1965, Englewood Cliffs, N.J.Google Scholar
  13. Hastings, C., 1955, Approximations for Digital Computers, Princeton U.P., Princeton, NJ.MATHGoogle Scholar
  14. Hou, T.Y., Lowengrub, J.S. & Shelley, M.J., 1997, The long-time motion of vortex sheets with surface tension, Phys. Fluids, 9, 1933–1954.MathSciNetCrossRefMATHGoogle Scholar
  15. Jaswon, M.A. & Symm, G.T., 1977, Integral Equation Methods in Potential Theory and Elastostatics, Academic.MATHGoogle Scholar
  16. Joseph, D.D. & Liao, T.Y., 1994, Potential flows of viscous and viscoelastic fluids, J. Fluid Mech., 265, 1–23.MathSciNetCrossRefMATHGoogle Scholar
  17. Kim, S. & Karrila, S.J., 1991, Microhydrodynamics, Butterworth-Heinemann, Boston.Google Scholar
  18. Kress, R., 1989, Linear Integral Equations, Springer, Berlin.CrossRefMATHGoogle Scholar
  19. Lamb, H., 1932, Hydrodynamics, Cambridge U.P., 6th ed.MATHGoogle Scholar
  20. Lenoir, M., 1976, Calcul numérique de l’implosion d’une bulle de cavitation au voisinage d’une paroi ou d’une surface libre, J. Mécanique, 15, 725–751.MathSciNetMATHGoogle Scholar
  21. Li, X.F., Charles, R., & Pozrikidis, C., 1996, Simple shear flow of suspensions of liquid drops, J. Fluid Mech., 320, 395–416.CrossRefMATHGoogle Scholar
  22. Longuet-Higgins, M.S. & Cokelet, E.D., 1976, The deformation of steep surface waves on water. I. A numerical method of computation, Proc. R. Soc. London, 350, 1–26.MathSciNetCrossRefMATHGoogle Scholar
  23. Lowenberg, M. & Hinch, E.J., 1996, Numerical simulation of a concentrated emulsion in shear flow, J. Fluid Mech., 321, 395–419.CrossRefGoogle Scholar
  24. Lowenberg, M. & Hinch, E.J., 1997, Collision of two deformable drops in shear flow, J. Fluid Mech., 338, 299–315.MathSciNetCrossRefGoogle Scholar
  25. Lundgren, T.S. & Koumoutsakos, P., 1999, On the generation of vorticity at a free surface, J. Fluid Mech., 382, 351–366.MathSciNetCrossRefMATHGoogle Scholar
  26. Lundgren, T.S. & Mansour, N.N., 1988, Oscillations of drops in zero gravity with weak viscous effects, J. Fluid Mech., 194, 479–510.MathSciNetCrossRefMATHGoogle Scholar
  27. Oguz, H.N. & Prosperetti, A., 1990, Bubble entrainment by the impact of drops on liquid surfaces, J. Fluid Mech., 219, 143–179.MathSciNetCrossRefGoogle Scholar
  28. Pozrikidis, C., 1990, The instability of a moving viscous drop, J. Fluid Mech., 210, 1–21.MathSciNetCrossRefMATHGoogle Scholar
  29. Pozrikidis, C., 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge U.P., Cambridge.CrossRefMATHGoogle Scholar
  30. Pozrikidis, C., 1998, Numerical study of cusp formation at fluid interfaces in Stokes flow, J. Fluid Mech., 357, 29–57.MathSciNetCrossRefMATHGoogle Scholar
  31. Shelley, M.J., 1992, A study of singularity formation in vortex-sheet motion by a spectrally, accurate vortex method, J. Fluid Mech., 244, 493–526.MathSciNetCrossRefMATHGoogle Scholar
  32. Sladek, V. & Sladek, J., 1998, Singular Integrals in Boundary Element Methods, Computational Mechanics Publications, Southampton.MATHGoogle Scholar
  33. Stone, H.A., 1994, Dynamics of drop deformation and break-up in viscous fluids, Annu. Rev. Fluid Mech., 26, 65–102.CrossRefGoogle Scholar
  34. Tsai, T.M. & Miksis, M.J., 1994, Dynamics of a drop on a constricted capillary tube, J. Fluid Mech., 274, 197–217.MathSciNetCrossRefMATHGoogle Scholar
  35. Yeung, R.W., 1982, Numerical methods in free-surface flows, Annu. Rev. Fluid Mech., 14, 395–442.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Andrea Prosperetti
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Faculty of Applied Physics and Twente Institute of MechanicsUniversity of TwenteEnschedeThe Netherlands
  3. 3.BurgerscentrumThe Netherlands

Personalised recommendations