Interactions between Drops and Hot Surfaces

  • Martin Rein
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 456)


Heat transfer and phase change phenomena occurring during drop-surface interactions are of a great importance in a number of technical applications. Surfaces whose temperatures are above and below the saturation and solidification point of the liquid need to be distinguished. In internal combustion engines, in spray cooling processes and in fire extinguishing drops impinge on surfaces that are far above the saturation temperature. The impact of drops on surfaces whose temperature is below the solidification point of the liquid is of contrary concern in icing of airfoils and in coating processes by thermal sprays, respectively. In the former case the formation of an ice layer shall be avoided while in the latter case a deposition and solidification of molten metal drops is desired. In all these cases many different flow phenomena such as spreading and splashing that are well-known from impacts without heat exchange, can be found. The characteristics of these flows are enhanced by the addition of new phenomena such as solidification, nucleate boiling or the reflection of drops by a vapor cushion. Radial temperature gradients can cause the onset of surface tension driven flows. In this chapter we will concentrate on the interaction of drops with surfaces whose temperature is so high that evaporation plays a dominant role. Solidification processes occurring during the interaction of drops with cold surfaces is the topic of the preceding chapter “Heat Transfer and Solidification During the Impact of a Droplet on a Surface” by Poulikakos et al.


Heat Transfer Wall Temperature Weber Number Saturation Temperature Disk Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akao, E., Araki, K., Mori, S. and Moriyama, A. (1980). Deformation Behaviors of a Liquid Droplet Impinging onto Hot Metal Surfaces. Trans. Iron Steel Inst. Japan 20:737–743.Google Scholar
  2. Anders, K., Roth, N. and Frohn, A. (1993). The velocity change of ethanol droplets during collision with a wall analysed by image processing. Experiments in Fluids 15:91–96.CrossRefGoogle Scholar
  3. Andreyev, A. P. and Borishanskiy, V. M. (1981). Calculation of the Leidenfrost temperature and of the time required for vaporization of spheroidal droplets at this temperature. Heat Trans. — Soviet Res. 13:23–35.Google Scholar
  4. Baehr, H. D. und Stephan, K. (1994). Wärme- und Stoffübertragung, Berlin: Springer. 596–597.CrossRefGoogle Scholar
  5. Baumeister, K. J. and Hamill, T. D. (1965). Creeping Flow Solution of the Leidenfrost Phenomenon. NASA TN D-3133.Google Scholar
  6. Baumeister, K. J., Hendricks, R. C. and Hamill, T. D. (1966). Metastable Leidenfrost states. NASA TN D-3226.Google Scholar
  7. Bell, K. J. (1967). The Leidenfrost phenomenon: a survey. Chem. Eng. Prog. 63(79):73–82.Google Scholar
  8. Bernardin, J. D. and Mudawar, I. (1999). The Leidenfrost point: experimental study and assessment of existing models. J. Heat Transfer 121:894–903.CrossRefGoogle Scholar
  9. Bernardin, J. D., Stebbins, C. J. and Mudawar, I. (1997). Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int. J. Heat Mass Transfer 40:247–267.CrossRefGoogle Scholar
  10. Bolle, L. and Moureau, J. C. (1982). Spray Cooling of Hot Surfaces. In: Hewitt, G. E., Delhaye, J. M. and Zuber, N., eds., Multiphase Science and Technology, Washington:Hemisphere. 1 – 97.Google Scholar
  11. Bonacina, C., Del Giudice, S. and Comini, G. (1979). Dropwise evaporation. J. Heat Transfer 101:410–446.Google Scholar
  12. Borishansky, V. M.(1953). Heat transfer to a liquid freely flowing over a surface heated to a temperature above the boiling point. In: Problems of heat transfer during a change of states. Transi Series AEC-tr-3405. U.S. Atomic Energy Commission, Washington, D.C., 109–144.Google Scholar
  13. Carey, V. P. (1992). Liquid-Vapor Phase-Change Phenomena, Washington: Hemisphere. 35–38.Google Scholar
  14. Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of heat in solids, London: Oxford Univ. Press. 260, 264.Google Scholar
  15. Chandra, S. and Avedisian, T. C. (1990). Gallery of fluid motion: The collision of a droplet with a solid surface. Phys. Fluids A 2(9): 1525.Google Scholar
  16. Chandra, S. and Avedisian, T. C. (1991). On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432:13–41.CrossRefGoogle Scholar
  17. Chandra, S. and Aziz, S. D. (1994). Leidenfrost Evaporation of Liquid Nitrogen Droplets. J. Heat Transfer 116:999–1006.CrossRefGoogle Scholar
  18. Chaves, H., Kubitzek, A. M. and Obermeier, F. (1999). Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls. Int. J. Heat Fluid Flow 20:470–476.CrossRefGoogle Scholar
  19. Cho, P. and Law, C. K. (1985). Pressure/temperature ignition limits of fuel droplet vaporizing over a hot plate. Int. J. Heat Mass Transfer 28(11):2174–217’6.CrossRefGoogle Scholar
  20. Chow, L. C., Sehmbey, M. S., and Pais, M. R. (1997). High Heat Flux Spray Cooling. In: Tien, C.-L. (ed.), Ann. Rev. Heat Transfer8, New York:Begell House. 291–318.Google Scholar
  21. di Marzo, M. and Evans, D. D. (1989). Evaporation of a water droplet deposited on a hot high thermal conductivity surface. J. Heat Transfer 111:210–213.CrossRefGoogle Scholar
  22. di Marzo, M., Tartarini, P., Liao, Y., Evans, D. D. and Baum, H. (1993). Evaporative cooling due to a gently deposited droplet. Int. J. Heat Mass Transfer 36(17):4133–4139.CrossRefGoogle Scholar
  23. Disselhorst, J. H. M. and van Wijngarden, L. (1980). Flow in the exit of open pipes during acoustic resonance. J. Fluid Mech. 99(2):293–319.MathSciNetCrossRefGoogle Scholar
  24. Emmerson, G. S. (1975). The effect of pressure and surface material on the Leidenfrost point of discrete drops of water. Int. J. Heat Mass Transfer 18:381–386.CrossRefGoogle Scholar
  25. Emmerson, G. S. and Snoek, C. W. (1978). The effect of pressure on the Leidenfrost point of discrete drops of water and freon on a brass surface. Int. J. Heat Mass Transfer 21:1081–1086.CrossRefGoogle Scholar
  26. Fujimoto, H. and Hatta, N. (1996). Deformation and rebounding process of a water droplet impinging on a flat surface above the Leidenfrost temperature. J. Fluids Engng. 118:142–149.CrossRefGoogle Scholar
  27. Gottfried, B. S., Lee, C. J. and Bell, K. J. (1966). The Leidenfrost Phenomenon: Film boiling of liquid droplets on a flat plate. Int. J. Heat Mass Transfer 9:1167–1187.CrossRefGoogle Scholar
  28. Goldshtik, M. A., Khanin, V. M. and Ligai, V. G. (1986). A liquid drop on an air cushion as an analogue of Leidenfrost boiling. J. Fluid Mech. 166:1–20.CrossRefMATHGoogle Scholar
  29. Hatta, N., Fujimoto, H., Kinoshita, K. and Takuda, H. (1997). Experimental study of deformation mechanism of a water droplet impinging on hot metallic surfaces above the Leidenfrost temperature. J. Fluids Engng. 119:692–699.CrossRefGoogle Scholar
  30. Inada, S., Miyasaka, Y., Nishida, K. and Chandratilleke, G. R. (1983). Transient temperature variation of a hot wall due to an impinging water drop — effect of subcooling of the water drop. ASME — JSME Thermal Engng. Joint Conf. I. 173–182.Google Scholar
  31. Karl, A., Anders, K. and Frohn, A. (1993). Experimental investigation of droplet deformation during wall collisions by image analysis. Experimental and Numerical Flow Visualization, ASME FED-Vol. 172:135–141.Google Scholar
  32. Karl, A. and Frohn, A. (2000). Experimental investigation of interaction processes between droplets and hot walls. Phys. Fluids 12:785–796.CrossRefMATHGoogle Scholar
  33. Karl, A., Rieber, M., Schelkle, M., Anders, K. and Frohn, A. (1996). Comparison of new numerical results for droplet wall interactions with experimental results. Symp. Numer. Methods Multiphase Flows, ASME FED-Vol. 236:201–206.Google Scholar
  34. Kistemaker, J. (1963). The spheroidal state of a waterdrop. Physica 29:96–104.CrossRefGoogle Scholar
  35. Labeish, V. G. (1994). Thermohydrodynamic study of a drop impact against a heated surface. Exp. Thermal and Fluid Science 8:181–194.CrossRefGoogle Scholar
  36. Lavergne, G., Hébrard, R., Biscos, Y. and Trichet, P. (1991). Experimental study of boundary conditions for two phase flow in combustion chambers. Spray and Aerosols’91, ILASS, Guilford. 101–106.Google Scholar
  37. Leidenfrost, J. G., translated by Wares, C., with an introduction by Bell, K. J. (1966). On the fixation of water in diverse fire. Int. J. Heat Mass Transfer 9:1153–1166.Google Scholar
  38. Li, S. C. (1997). Spray Stagnation Flames. Prog. Energy Combust. Sci. 23:303–347.CrossRefGoogle Scholar
  39. Li, S. C., Libby, P. A. and Williams, F. A. (1995). Spray impingement on a hot surface in reacting stagnation flows. AIAA J. 33:1046–1055.CrossRefGoogle Scholar
  40. Mao, T., Kuhn, D. C. S., and Honghi Tran (1997). Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces. AIChE J. 43(9):2169–2179.CrossRefGoogle Scholar
  41. McGinnis, F. K. and Holman, J. P. (1969). Individual droplet heat-transfer rates for splattering on hot surfaces. Int. J. Heat Mass Transfer 12:95–108.CrossRefGoogle Scholar
  42. Naber, J. D. and Farrell, P. V. (1993). Hydrodynamics of droplet impingement on a heated surface. SAE-Techn. Paper No.930919.Google Scholar
  43. Naber, J. D. and Reitz, R. D. (1988). Modeling engine spray/wall impingement. SAE-Techn. Paper No.880107.CrossRefGoogle Scholar
  44. Nigmatulin, B. I., Vasiliev, N. I. and Guguchkin, V. V. (1993). Interaction between liquid droplets and heated surfaces. Wärme- und Stoffübertragung 28:313–319.CrossRefGoogle Scholar
  45. Nukiyama, S., translated by Lee, C. J. (1966). The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transfer 9:1419–1433.CrossRefGoogle Scholar
  46. Pearson, J. R. A. (1958). On convection cells induced by surface tension. J. Fluid Mech. 4:489–500.CrossRefMATHGoogle Scholar
  47. Pedersen, C. O. (1970). An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface. Int. J. Heat Mass Transfer 13:369–381.CrossRefGoogle Scholar
  48. Qiao, Y. M. and Chandra, S. (1995). Impact of n-heptane droplets on a hot surface in low gravity. Trans. Canadian Soc. Mech. Engng. 19(3):271–284.Google Scholar
  49. Rein, M. (1993). Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12:61–93.CrossRefGoogle Scholar
  50. Rein, M. (1999). The reflection of drops off hot surfaces. Z. angew. Math. Mech. 79(S3):S743–S744.Google Scholar
  51. Rhodes, T. R. and Bell, K. J. (1978). The Leidenfrost phenomenon at pressures up to the critical. Sixth Int. Heat Transfer Conf I. Washington. 251–255.Google Scholar
  52. Richard, D. and Quéré, D. (2000). Bouncing water drops. Europhysics Letters 50:769–775.CrossRefGoogle Scholar
  53. Sadhal, S. S., Ayyaswamy, P. S. and Chung, J. N. (1997). Transport Phenomena with Drops and Bubbles, New York: Springer. 232–262.Google Scholar
  54. Schmehl, R., Rosskamp, H., Willmann, M. and Wittig, S. (1999). CFD analysis of spray propagation and evaporation including wall film formation and spray/film interactions. Int. J. Heat Fluid Flow 20:520–529.CrossRefGoogle Scholar
  55. Seki, M., Kawamura, H. and Sanokawa, K. (1978). Transient temperature profile of a hot wall due to an impinging liquid droplet. J. Heat Transfer 100:167–169.CrossRefGoogle Scholar
  56. Sen, A. K. and Law, C. K. (1984). On a slowly evaporating droplet near a hot plate. Int. J. Heat Mass Transfer 27(8): 1418–1421.CrossRefGoogle Scholar
  57. Senda, J. and Fujimoto, H. G. (1999). Multidimensional modeling of impinging sprays on the wall in diesel engines. Appl Mech. Rev. 52(4): 119–138.CrossRefGoogle Scholar
  58. Shi, M. H., Bai T. C. and Yu, J.(1993). Dynamic behavior and heat transfer of a liquid droplet impinging on a solid surface. Exp. Thermal and Fluid Science 6:202–207.CrossRefGoogle Scholar
  59. Takeuchi, K., Senda, J. and Yamada, Y. (1983). Heat transfer characteristics and the breakup behavior of small droplets impinging upon a hot surface. ASME — JSME Thermal Engng. Joint Conf. I. 165–172.Google Scholar
  60. Tamura, Z. and Tanasawa, Y. (1959). Evaporation and combustion of a drop contacting with a hot surface. Proc. Seventh Symp. (Int.) on Combustion. Butterworths. 509–522.Google Scholar
  61. Tartarini, P., Lorenzini, G. and Randi, M. R. (1999). Experimental study of water droplet boiling on hot, non-porous surfaces. Heat Mass Transfer 34:437–447.CrossRefGoogle Scholar
  62. Toda, S. (1972). A Study of Mist Cooling (1st Report: Investigation of Mist Cooling). Heat Transfer — Japanese Research 1(3): 39–50.MathSciNetGoogle Scholar
  63. Toda, S. (1974). A Study of Mist Cooling (2nd Report: Theory of Mist Cooling and Its Fundamental Experiments). Heat Transfer — Japanese Research 3(1): 1–44.Google Scholar
  64. Ueda, T., Enomoto, T. and Kanetsuki, M. (1979). Heat transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface. Bull. JSME 22(167):724–732.CrossRefGoogle Scholar
  65. Vortmeyer, D. (1984). VDI-Wärmeatlas, Abschnitt Kb: Einstrahlzahlen. Düsseldorf.Google Scholar
  66. Wachters, L. H. J., Bonne, H. and van Nouhuis, H. J. (1966). The heat transfer from a hot horizontal plate to sessile water drops in the spheroidal state. Chem. Engng. Science 21:923–936.CrossRefGoogle Scholar
  67. Wachters, L. H. J. and Westerling, N. A. J. (1966). The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Engng. Science 21:1047–1056.CrossRefGoogle Scholar
  68. Wang, A.-B., Lin, C.-H. and Chen, C.-C. (2000). The critical temperature of dry impact for tiny droplet impinging on a heated surface. Phys. Fluids 12:1622–1625.CrossRefMATHGoogle Scholar
  69. Weinbaum, S., Chen, L. and Ganatos, P. (1989). Elastohydrodynamic collision and rebound of a flat plate from a planar surface due to body and fluid inertia Phys. Fluids A 1(1): 140–155.CrossRefGoogle Scholar
  70. Wruck, N. and Renz, U. (2000). Transient Phase-Change of Droplets Impacting on a Hot Wall. In: Mayinger, F. and Giernoth, B. (eds.). Transient Phenomena in Multiphase and Multicomponent Systems. Weinheim: Wiley-VCH. 210–226.CrossRefGoogle Scholar
  71. Xiong, T. Y. and Yuen, M. C. (1991). Evaporation of a liquid droplet on a hot plate. Int. J. Heat Mass Transfer 34(7): 1881–1894.CrossRefGoogle Scholar
  72. Yao, S.-C. (1994). Dynamics and Heat Transfer of Impacting Sprays. In: Tien, C.-L. (ed.), Ann. Rev. Heat Transfer, New York:Begell House. 351–382.Google Scholar
  73. Yao, S.-C. and Cai, K. Y. (1988). The dynamics and Leidenfrost temperature of drops impinging on a hot surface at small angles. Exp. Thermal and Fluid Science 1:363–371.CrossRefGoogle Scholar
  74. Zhang, S. and Gogos, G. (1991). Film evaporation of a spherical droplet over a hot surface: fluid mechanics and heat/mass transfer analysis. J. Fluid Mech. 222:543–563.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Martin Rein
    • 1
  1. 1.Deutsches Zentrum für Luft- und RaumfahrtGöttingenGermany

Personalised recommendations