Skip to main content

Interactions between Drops and Hot Surfaces

  • Conference paper
Drop-Surface Interactions

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 456))

Abstract

Heat transfer and phase change phenomena occurring during drop-surface interactions are of a great importance in a number of technical applications. Surfaces whose temperatures are above and below the saturation and solidification point of the liquid need to be distinguished. In internal combustion engines, in spray cooling processes and in fire extinguishing drops impinge on surfaces that are far above the saturation temperature. The impact of drops on surfaces whose temperature is below the solidification point of the liquid is of contrary concern in icing of airfoils and in coating processes by thermal sprays, respectively. In the former case the formation of an ice layer shall be avoided while in the latter case a deposition and solidification of molten metal drops is desired. In all these cases many different flow phenomena such as spreading and splashing that are well-known from impacts without heat exchange, can be found. The characteristics of these flows are enhanced by the addition of new phenomena such as solidification, nucleate boiling or the reflection of drops by a vapor cushion. Radial temperature gradients can cause the onset of surface tension driven flows. In this chapter we will concentrate on the interaction of drops with surfaces whose temperature is so high that evaporation plays a dominant role. Solidification processes occurring during the interaction of drops with cold surfaces is the topic of the preceding chapter “Heat Transfer and Solidification During the Impact of a Droplet on a Surface” by Poulikakos et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akao, E., Araki, K., Mori, S. and Moriyama, A. (1980). Deformation Behaviors of a Liquid Droplet Impinging onto Hot Metal Surfaces. Trans. Iron Steel Inst. Japan 20:737–743.

    Google Scholar 

  • Anders, K., Roth, N. and Frohn, A. (1993). The velocity change of ethanol droplets during collision with a wall analysed by image processing. Experiments in Fluids 15:91–96.

    Article  Google Scholar 

  • Andreyev, A. P. and Borishanskiy, V. M. (1981). Calculation of the Leidenfrost temperature and of the time required for vaporization of spheroidal droplets at this temperature. Heat Trans. — Soviet Res. 13:23–35.

    Google Scholar 

  • Baehr, H. D. und Stephan, K. (1994). Wärme- und Stoffübertragung, Berlin: Springer. 596–597.

    Book  Google Scholar 

  • Baumeister, K. J. and Hamill, T. D. (1965). Creeping Flow Solution of the Leidenfrost Phenomenon. NASA TN D-3133.

    Google Scholar 

  • Baumeister, K. J., Hendricks, R. C. and Hamill, T. D. (1966). Metastable Leidenfrost states. NASA TN D-3226.

    Google Scholar 

  • Bell, K. J. (1967). The Leidenfrost phenomenon: a survey. Chem. Eng. Prog. 63(79):73–82.

    Google Scholar 

  • Bernardin, J. D. and Mudawar, I. (1999). The Leidenfrost point: experimental study and assessment of existing models. J. Heat Transfer 121:894–903.

    Article  Google Scholar 

  • Bernardin, J. D., Stebbins, C. J. and Mudawar, I. (1997). Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int. J. Heat Mass Transfer 40:247–267.

    Article  Google Scholar 

  • Bolle, L. and Moureau, J. C. (1982). Spray Cooling of Hot Surfaces. In: Hewitt, G. E., Delhaye, J. M. and Zuber, N., eds., Multiphase Science and Technology, Washington:Hemisphere. 1 – 97.

    Google Scholar 

  • Bonacina, C., Del Giudice, S. and Comini, G. (1979). Dropwise evaporation. J. Heat Transfer 101:410–446.

    Google Scholar 

  • Borishansky, V. M.(1953). Heat transfer to a liquid freely flowing over a surface heated to a temperature above the boiling point. In: Problems of heat transfer during a change of states. Transi Series AEC-tr-3405. U.S. Atomic Energy Commission, Washington, D.C., 109–144.

    Google Scholar 

  • Carey, V. P. (1992). Liquid-Vapor Phase-Change Phenomena, Washington: Hemisphere. 35–38.

    Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of heat in solids, London: Oxford Univ. Press. 260, 264.

    Google Scholar 

  • Chandra, S. and Avedisian, T. C. (1990). Gallery of fluid motion: The collision of a droplet with a solid surface. Phys. Fluids A 2(9): 1525.

    Google Scholar 

  • Chandra, S. and Avedisian, T. C. (1991). On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432:13–41.

    Article  Google Scholar 

  • Chandra, S. and Aziz, S. D. (1994). Leidenfrost Evaporation of Liquid Nitrogen Droplets. J. Heat Transfer 116:999–1006.

    Article  Google Scholar 

  • Chaves, H., Kubitzek, A. M. and Obermeier, F. (1999). Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls. Int. J. Heat Fluid Flow 20:470–476.

    Article  Google Scholar 

  • Cho, P. and Law, C. K. (1985). Pressure/temperature ignition limits of fuel droplet vaporizing over a hot plate. Int. J. Heat Mass Transfer 28(11):2174–217’6.

    Article  Google Scholar 

  • Chow, L. C., Sehmbey, M. S., and Pais, M. R. (1997). High Heat Flux Spray Cooling. In: Tien, C.-L. (ed.), Ann. Rev. Heat Transfer8, New York:Begell House. 291–318.

    Google Scholar 

  • di Marzo, M. and Evans, D. D. (1989). Evaporation of a water droplet deposited on a hot high thermal conductivity surface. J. Heat Transfer 111:210–213.

    Article  Google Scholar 

  • di Marzo, M., Tartarini, P., Liao, Y., Evans, D. D. and Baum, H. (1993). Evaporative cooling due to a gently deposited droplet. Int. J. Heat Mass Transfer 36(17):4133–4139.

    Article  Google Scholar 

  • Disselhorst, J. H. M. and van Wijngarden, L. (1980). Flow in the exit of open pipes during acoustic resonance. J. Fluid Mech. 99(2):293–319.

    Article  MathSciNet  Google Scholar 

  • Emmerson, G. S. (1975). The effect of pressure and surface material on the Leidenfrost point of discrete drops of water. Int. J. Heat Mass Transfer 18:381–386.

    Article  Google Scholar 

  • Emmerson, G. S. and Snoek, C. W. (1978). The effect of pressure on the Leidenfrost point of discrete drops of water and freon on a brass surface. Int. J. Heat Mass Transfer 21:1081–1086.

    Article  Google Scholar 

  • Fujimoto, H. and Hatta, N. (1996). Deformation and rebounding process of a water droplet impinging on a flat surface above the Leidenfrost temperature. J. Fluids Engng. 118:142–149.

    Article  Google Scholar 

  • Gottfried, B. S., Lee, C. J. and Bell, K. J. (1966). The Leidenfrost Phenomenon: Film boiling of liquid droplets on a flat plate. Int. J. Heat Mass Transfer 9:1167–1187.

    Article  Google Scholar 

  • Goldshtik, M. A., Khanin, V. M. and Ligai, V. G. (1986). A liquid drop on an air cushion as an analogue of Leidenfrost boiling. J. Fluid Mech. 166:1–20.

    Article  MATH  Google Scholar 

  • Hatta, N., Fujimoto, H., Kinoshita, K. and Takuda, H. (1997). Experimental study of deformation mechanism of a water droplet impinging on hot metallic surfaces above the Leidenfrost temperature. J. Fluids Engng. 119:692–699.

    Article  Google Scholar 

  • Inada, S., Miyasaka, Y., Nishida, K. and Chandratilleke, G. R. (1983). Transient temperature variation of a hot wall due to an impinging water drop — effect of subcooling of the water drop. ASME — JSME Thermal Engng. Joint Conf. I. 173–182.

    Google Scholar 

  • Karl, A., Anders, K. and Frohn, A. (1993). Experimental investigation of droplet deformation during wall collisions by image analysis. Experimental and Numerical Flow Visualization, ASME FED-Vol. 172:135–141.

    Google Scholar 

  • Karl, A. and Frohn, A. (2000). Experimental investigation of interaction processes between droplets and hot walls. Phys. Fluids 12:785–796.

    Article  MATH  Google Scholar 

  • Karl, A., Rieber, M., Schelkle, M., Anders, K. and Frohn, A. (1996). Comparison of new numerical results for droplet wall interactions with experimental results. Symp. Numer. Methods Multiphase Flows, ASME FED-Vol. 236:201–206.

    Google Scholar 

  • Kistemaker, J. (1963). The spheroidal state of a waterdrop. Physica 29:96–104.

    Article  Google Scholar 

  • Labeish, V. G. (1994). Thermohydrodynamic study of a drop impact against a heated surface. Exp. Thermal and Fluid Science 8:181–194.

    Article  Google Scholar 

  • Lavergne, G., Hébrard, R., Biscos, Y. and Trichet, P. (1991). Experimental study of boundary conditions for two phase flow in combustion chambers. Spray and Aerosols’91, ILASS, Guilford. 101–106.

    Google Scholar 

  • Leidenfrost, J. G., translated by Wares, C., with an introduction by Bell, K. J. (1966). On the fixation of water in diverse fire. Int. J. Heat Mass Transfer 9:1153–1166.

    Google Scholar 

  • Li, S. C. (1997). Spray Stagnation Flames. Prog. Energy Combust. Sci. 23:303–347.

    Article  Google Scholar 

  • Li, S. C., Libby, P. A. and Williams, F. A. (1995). Spray impingement on a hot surface in reacting stagnation flows. AIAA J. 33:1046–1055.

    Article  Google Scholar 

  • Mao, T., Kuhn, D. C. S., and Honghi Tran (1997). Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces. AIChE J. 43(9):2169–2179.

    Article  Google Scholar 

  • McGinnis, F. K. and Holman, J. P. (1969). Individual droplet heat-transfer rates for splattering on hot surfaces. Int. J. Heat Mass Transfer 12:95–108.

    Article  Google Scholar 

  • Naber, J. D. and Farrell, P. V. (1993). Hydrodynamics of droplet impingement on a heated surface. SAE-Techn. Paper No.930919.

    Google Scholar 

  • Naber, J. D. and Reitz, R. D. (1988). Modeling engine spray/wall impingement. SAE-Techn. Paper No.880107.

    Book  Google Scholar 

  • Nigmatulin, B. I., Vasiliev, N. I. and Guguchkin, V. V. (1993). Interaction between liquid droplets and heated surfaces. Wärme- und Stoffübertragung 28:313–319.

    Article  Google Scholar 

  • Nukiyama, S., translated by Lee, C. J. (1966). The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transfer 9:1419–1433.

    Article  Google Scholar 

  • Pearson, J. R. A. (1958). On convection cells induced by surface tension. J. Fluid Mech. 4:489–500.

    Article  MATH  Google Scholar 

  • Pedersen, C. O. (1970). An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface. Int. J. Heat Mass Transfer 13:369–381.

    Article  Google Scholar 

  • Qiao, Y. M. and Chandra, S. (1995). Impact of n-heptane droplets on a hot surface in low gravity. Trans. Canadian Soc. Mech. Engng. 19(3):271–284.

    Google Scholar 

  • Rein, M. (1993). Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12:61–93.

    Article  Google Scholar 

  • Rein, M. (1999). The reflection of drops off hot surfaces. Z. angew. Math. Mech. 79(S3):S743–S744.

    Google Scholar 

  • Rhodes, T. R. and Bell, K. J. (1978). The Leidenfrost phenomenon at pressures up to the critical. Sixth Int. Heat Transfer Conf I. Washington. 251–255.

    Google Scholar 

  • Richard, D. and Quéré, D. (2000). Bouncing water drops. Europhysics Letters 50:769–775.

    Article  Google Scholar 

  • Sadhal, S. S., Ayyaswamy, P. S. and Chung, J. N. (1997). Transport Phenomena with Drops and Bubbles, New York: Springer. 232–262.

    Google Scholar 

  • Schmehl, R., Rosskamp, H., Willmann, M. and Wittig, S. (1999). CFD analysis of spray propagation and evaporation including wall film formation and spray/film interactions. Int. J. Heat Fluid Flow 20:520–529.

    Article  Google Scholar 

  • Seki, M., Kawamura, H. and Sanokawa, K. (1978). Transient temperature profile of a hot wall due to an impinging liquid droplet. J. Heat Transfer 100:167–169.

    Article  Google Scholar 

  • Sen, A. K. and Law, C. K. (1984). On a slowly evaporating droplet near a hot plate. Int. J. Heat Mass Transfer 27(8): 1418–1421.

    Article  Google Scholar 

  • Senda, J. and Fujimoto, H. G. (1999). Multidimensional modeling of impinging sprays on the wall in diesel engines. Appl Mech. Rev. 52(4): 119–138.

    Article  Google Scholar 

  • Shi, M. H., Bai T. C. and Yu, J.(1993). Dynamic behavior and heat transfer of a liquid droplet impinging on a solid surface. Exp. Thermal and Fluid Science 6:202–207.

    Article  Google Scholar 

  • Takeuchi, K., Senda, J. and Yamada, Y. (1983). Heat transfer characteristics and the breakup behavior of small droplets impinging upon a hot surface. ASME — JSME Thermal Engng. Joint Conf. I. 165–172.

    Google Scholar 

  • Tamura, Z. and Tanasawa, Y. (1959). Evaporation and combustion of a drop contacting with a hot surface. Proc. Seventh Symp. (Int.) on Combustion. Butterworths. 509–522.

    Google Scholar 

  • Tartarini, P., Lorenzini, G. and Randi, M. R. (1999). Experimental study of water droplet boiling on hot, non-porous surfaces. Heat Mass Transfer 34:437–447.

    Article  Google Scholar 

  • Toda, S. (1972). A Study of Mist Cooling (1st Report: Investigation of Mist Cooling). Heat Transfer — Japanese Research 1(3): 39–50.

    MathSciNet  Google Scholar 

  • Toda, S. (1974). A Study of Mist Cooling (2nd Report: Theory of Mist Cooling and Its Fundamental Experiments). Heat Transfer — Japanese Research 3(1): 1–44.

    Google Scholar 

  • Ueda, T., Enomoto, T. and Kanetsuki, M. (1979). Heat transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface. Bull. JSME 22(167):724–732.

    Article  Google Scholar 

  • Vortmeyer, D. (1984). VDI-Wärmeatlas, Abschnitt Kb: Einstrahlzahlen. Düsseldorf.

    Google Scholar 

  • Wachters, L. H. J., Bonne, H. and van Nouhuis, H. J. (1966). The heat transfer from a hot horizontal plate to sessile water drops in the spheroidal state. Chem. Engng. Science 21:923–936.

    Article  Google Scholar 

  • Wachters, L. H. J. and Westerling, N. A. J. (1966). The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Engng. Science 21:1047–1056.

    Article  Google Scholar 

  • Wang, A.-B., Lin, C.-H. and Chen, C.-C. (2000). The critical temperature of dry impact for tiny droplet impinging on a heated surface. Phys. Fluids 12:1622–1625.

    Article  MATH  Google Scholar 

  • Weinbaum, S., Chen, L. and Ganatos, P. (1989). Elastohydrodynamic collision and rebound of a flat plate from a planar surface due to body and fluid inertia Phys. Fluids A 1(1): 140–155.

    Article  Google Scholar 

  • Wruck, N. and Renz, U. (2000). Transient Phase-Change of Droplets Impacting on a Hot Wall. In: Mayinger, F. and Giernoth, B. (eds.). Transient Phenomena in Multiphase and Multicomponent Systems. Weinheim: Wiley-VCH. 210–226.

    Chapter  Google Scholar 

  • Xiong, T. Y. and Yuen, M. C. (1991). Evaporation of a liquid droplet on a hot plate. Int. J. Heat Mass Transfer 34(7): 1881–1894.

    Article  Google Scholar 

  • Yao, S.-C. (1994). Dynamics and Heat Transfer of Impacting Sprays. In: Tien, C.-L. (ed.), Ann. Rev. Heat Transfer, New York:Begell House. 351–382.

    Google Scholar 

  • Yao, S.-C. and Cai, K. Y. (1988). The dynamics and Leidenfrost temperature of drops impinging on a hot surface at small angles. Exp. Thermal and Fluid Science 1:363–371.

    Article  Google Scholar 

  • Zhang, S. and Gogos, G. (1991). Film evaporation of a spherical droplet over a hot surface: fluid mechanics and heat/mass transfer analysis. J. Fluid Mech. 222:543–563.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this paper

Cite this paper

Rein, M. (2002). Interactions between Drops and Hot Surfaces. In: Rein, M. (eds) Drop-Surface Interactions. CISM International Centre for Mechanical Sciences, vol 456. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2594-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2594-6_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83692-7

  • Online ISBN: 978-3-7091-2594-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics